Современные системы теплоснабжения. Современные системы отопления

СОВРЕМЕННЫЕ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ
(, Хабаровский центр энергоресурсосбережения)
В Хабаровске и Хабаровском крае, как и во многих других регионах Росси, преимущественно используются «открытые» системы теплоснабжения .
Под «открытой» системой в термодинамике понимается система, обменивающаяся массой с окружающей средой, т. е. «неплотная» система.
В данной публикации под «открытой» системой понимается система теплоснабжения, в которой система горячего водоснабжения (ГВС) подключена по «открытой» системе, т. е. с непосредственным водоразбором из трубопроводов системы теплоснабжения, а система отопления и вентиляции подключены по зависимой схеме присоединения к тепловым сетям.
Открытые системы теплоснабжения имеют следующие недостатки:
1. Большие расходы подпиточной воды и, следовательно, большие затраты на водоподготовку. При данной схеме теплоноситель может использоваться как продуктивно (на нужды ГВС), так и непродуктивно: несанкционированные утечки.
К несанкционированным утечкам относятся:
Утечки через запорно-регулирующую арматуру;
Утечки при повреждении трубопроводов;
Утечки через стояки системы отопления (сбросы) при разрегулированных системах отопления и при недостаточных перепадах давления на элеваторных вводах;
Утечки (сбросы) при ремонтах системы отопления, когда приходится полностью сливать воду и затем снова наполнять систему, а если выходные задвижки «не держат», то приходится «обесточивать» целый квартал или врезку.
Пример – авария в ноябре 2001 г. в Хабаровске на микрорайоне Большая – Вяземская. Чтобы провести в одной из школ ремонт системы теплоснабжения, пришлось отключить целый квартал.
2. При открытой схеме ГВС потребитель получает воду непосредственно из тепловой сети. В этом случае горячая вода может иметь температуру 90оС и более и давление 6-8 кгс/см2, что приводит не только к перерасходу тепла, но и потенциально создает опасную ситуацию как для санитарного оборудования, так и для людей.
3. Неустойчивый гидравлический режим теплопотребления (один потребитель вместо другого).
4. Плохое качество теплоносителя, который содержит большое количество механических примесей, органических соединений и растворенных газов. Это приводит к уменьшению срока эксплуатации трубопроводов систем теплоснабжения из-за повышенной коррозии и к уменьшению их пропускной способности из-за «обрастания», что нарушает гидравлический режим.
5. Невозможность, в принципе, создания комфортных условий у потребителя при использовании элеваторных систем отопления.
Необходимо ответить, что практически все тепловые пункты абонентов г. Хабаровска оборудованы элеваторным тепловым вводом.
Главное достоинство элеватора – это то, что он не потребляет энергии на свой привод. Сложилось мнение, что элеватор имеет низкий КПД, и это было бы справедливо, если для его работы необходимо было бы расходовать энергию. На самом деле для работы смешения используется разность давлений в трубопроводах системы теплоснабжения. Если бы не элеватор, то пришлось бы дросселировать поток теплоносителя, а дросселирование – это потеря энергии. Поэтому применительно к тепловым вводам, элеватор – это не насос с низким КПД, а устройство для вторичного использования энергии, затраченной на привод циркуляционных насосов ТЭЦ. Также к достоинствам элеватора можно отнести то, что для его обслуживания не требуются высококвалифицированные специалисты, так как элеватор – это простое, надежное и непритязательное в эксплуатации устройство.
Основной недостаток элеватора – это невозможность пропорционального регулирования тепловой мощности, так как при не изменяющемся диаметре отверстия соплового аппарата он имеет постоянный коэффициент смешения, а процесс регулирования предполагает возможности изменения этой величины. По этой причине на Западе элеватор отвергнут как устройство для тепловых пунктов. Отметим, что данный недостаток можно ликвидировать, если использовать элеватор с регулируемым соплом.
Однако практика использования элеваторов с регулируемым соплом показала их низкую надежность при плохом качестве сетевой воды (наличие механических примесей). Кроме того, такие устройства имеют небольшой диапазон регулирования. Поэтому в г. Хабаровске эти устройства не нашли широкого применения.
Другой недостаток элеватора – это ненадежность его работы при малом располагаемом перепаде давления. Для устойчивой работы элеватора необходимо иметь перепад давления от 120 кПа и более. Однако до настоящего времени в г. Хабаровске проектируются элеваторные узлы при перепаде давления 30-50 кПа. При таком перепаде нормальная эксплуатация элеваторных узлов, в принципе, невозможна и поэтому очень часто потребители с такими узлами работают на «сброс», что приводит к сверхнормативным потерям сетевой воды.
Применение элеваторных узлов тормозит внедрение в системах теплоснабжения энергосберегающих мероприятий, таких как комплексное автоматическое регулирование параметров теплоносителя в здании и адекватную этим задачам конструкцию системы отопления, обеспечивающих точность и стабильность комфортных условий и экономичный расход тепла.
Комплексное автоматическое регулирование включает в себя следующие базовые принципы:
регулирование в индивидуальных тепловых пунктах (ИТП) или автоматизированных узлах управления (АУУ), обеспечивающих в соответствии с отопительным графиком изменение температуры теплоносителя, подаваемого в систему отопления в зависимости от температуры наружного воздуха;
индивидуальное автоматическое регулирование на каждом отопительном приборе при помощи термостата, обеспечивающего поддержание заданной температуры в помещении.
Все вышеизложенное привело к тому, что, начиная с 2000 г., в г. Хабаровске начался масштабный переход от «открытых» зависимых систем теплоснабжения к «закрытым» независимым системам с автоматизированными тепловыми пунктами.
Реконструкция системы теплоснабжения с применением энергосберегающих мероприятий и переходом от «открытых» зависимых систем к «закрытым» независимым системам позволит:
Повысить комфортность и надежность обеспечения теплом за счет поддержания необходимой температуры в помещениях вне зависимости от погодных условий и параметров теплоносителя;
Повысит гидравлическую устойчивость системы теплоснабжения: гидравлический режим магистральных тепловых сетей нормализуется вследствие того, что автоматика не допускает сверхнормативного превышения потребления тепла;
Получить экономию тепла в размере 10-15% за счет регулирования температуры теплоносителя в соответствии с температурой наружного воздуха и ночного снижения температуры в отапливаемых зданиях до 30% в переходный период отопительного сезона;
Увеличить срок эксплуатации трубопроводов системы отопления здания в 4-5 раз, вследствие того, что при независимой схеме теплоснабжения во внутреннем контуре системы отопления циркулирует чистый теплоноситель, не содержащий растворенного кислорода и поэтому отопительные приборы и подводящие трубопроводы не забиваются грязью и продуктами коррозии;
Резко уменьшить подпитку тепловых сетей и, следовательно, затраты на водоподготовку, а также повысить качество горячей воды.
Применение независимых систем теплоснабжения открывает новые перспективы в развитии внутриквартальных сетей и внутренних систем отопления: использование гибких предизолированных пластиковых распределительных трубопроводов, имеющих срок службы около 50 лет, полипропиленовых труб для внутренних систем, штампованных панельных и алюминиевых радиаторов и т. п.
Однако переход в Хабаровске к современным системам теплоснабжения с автоматизированными тепловыми пунктами поставил перед проектными и монтажными организациями, энергоснабжающей организацией, потребителями тепла ряд проблем таких как:
Отсутствие круглогодичной циркуляции теплоносителя в магистральных тепловых сетях.
Устаревший подход к проектированию и монтажу внутренних систем теплоснабжения.
Необходимость в техническом обслуживании современных систем теплоснабжения.
Рассмотрим эти проблемы более подробно.
Проблема №1 Отсутствие круглогодичной циркуляции в магистральных трубопроводах тепловых сетей.
В Хабаровске магистральные трубопроводы системы теплоснабжения находятся под циркуляцией только в течение отопительного сезона: примерно с середины сентября до середины мая. В остальное время теплоноситель поступает по одному из трубопроводов: подающему или обратному, причем часть времени он подается по одному, а часть по другому трубопроводу.
Это приводит к большим неудобствам и дополнительным затратам при внедрении энергосберегающих технологий в системах теплоснабжения, в частности, в системах горячего водоснабжения (ГВС). Из-за отсутствия циркуляции в межотопительном сезоне приходится использовать смешанную «открыто-закрытую» систему ГВС: «закрытую» в отопительном сезоне и «открытую» в межотопительном сезоне, что увеличивает капитальные затраты на монтаж и оборудование теплового пункта на 0,5-3%.
Проблема №2. Устаревший подход к проектированию и монтажу внутренних систем теплоснабжения зданий.
В доперестроечный период развития нашего государства правительством была поставлена задача по экономии металла. В связи с этим началось массовое внедрение однотрубных нерегулируемых систем отопления, что было обусловлено более низкими (по сравнению с двухтрубными) металлозатратами, затратами на монтаж и более высокой теплогидравлической устойчивостью в многоэтажных зданиях.
В настоящее время при вводе новых объектов в городах России, таких как Москва и Санкт-Петербург, а также на Украине в целях энергосбережения обязательно применение терморегуляторов перед нагревательными приборами, что фактически, за незначительным исключением, предопределяет проектирование двухтрубных систем отопления.
Поэтому широкое распространение однотрубных систем при оснащении каждого отопительного прибора термостатом потеряло смысл. В регулируемых системах отопления при установке термостата перед нагревательным прибором двухтрубная система отопления оказывается высокоэффективной и обладающей повышенной гидравлической устойчивостью. При этом расхождения по металлозатратам по сравнению с однотрубными находятся в пределах ±10%.
Следует также отметить, что за рубежом однотрубные системы отопления практически не применяются
Схемы двухтрубных систем могут быть различными, однако наиболее целесообразно применять независимую схему, так как при применении терморегуляторов (термостатов) зависимая схема ненадежна в эксплуатации из-за низкого качества теплоносителя. При незначительных отверстиях в термостатах, измеряемых миллиметрами, они быстро выходят из строя.
В предлагается применять однотрубные системы отопления с терморегуляторами только для зданий не более 3-4 этажей. Там же отмечается нецелесообразность применения в системах отопления с терморегуляторами чугунных нагревательных приборов, так как в процессе эксплуатации из них вымываются формовочная земля, песок, окалина, которые забивают отверстия терморегуляторов.
Применение независимых схем теплоснабжения открывает новые перспективы: использование полимерных или металлополимерных трубопроводов для внутренних систем, современных нагревательных приборов (алюминиевые и стальные нагревательные приборы со встроенными терморегуляторами).
Следует отметить, что двухтрубная система отопления, в отличие от однотрубной, требует обязательной наладки с использованием специального оборудования и высококвалифицированных специалистов.
Необходимо отметить, что даже при проектировании и монтаже автоматизированных тепловых пунктов с погодным регулированием в г. Хабаровске до настоящего времени проектируются и внедряются только однотрубные системы отопления без терморегуляторов перед отопительными приборами. Причем эти системы гидравлически разбалансированы, а иногда настолько (например, детский дом по ул. Ленина), что для того, чтобы поддерживать нормальную температуру в здании, концевые стояки работают «на сброс» и это при независимой схеме отопления!
Хочется верить, что недооценка важности балансировки гидравлики систем отопления связана просто с отсутствием необходимых знаний и опыта.
Если Хабаровским проектировщикам и монтажным организациям задать вопрос: «Нужно ли проводить балансировку колес автомобиля?», то последует очевидный ответ: «Несомненно!» Но почему же тогда балансировка системы отопления, вентиляции и ГВС не считается необходимым делом. Ведь неправильные расходы теплоносителя приводят к неправильным температурам воздуха в помещении, плохой работе автоматики, шумам быстрому выходу из строя насосов, неэкономичной работе всей системы.
Проектировщики полагают, что достаточно провести гидравлический расчет с подбором труб и при необходимости шайб, и проблема будет решена. Но это не так. Во-первых, расчет имеет приближенный характер, а, во-вторых, при монтаже возникает масса дополнительных неконтролируемых факторов (чаще всего монтажники просто не устанавливают дроссельные шайбы).
Существует мнение , что гидравлику систем отопления можно увязать с помощью расчета настроек термостатических клапанов. Это тоже неверно. Например, если по каким-либо причинам через стояк не проходит достаточное количество теплоносителя, то термостатические клапаны будут просто открыты, а температура воздуха в помещении при этом будет низкой. С другой стороны, при перерасходе теплоносителя может возникнуть ситуация, когда открыты форточки и термостатические клапаны. Все вышесказанное абсолютно не умаляет необходимости и важности установки перед отопительными приборами термостатических клапанов, а лишь подчеркивает, что для их хорошей работы необходима балансировка системы.
Под балансировкой системы понимается наладка гидравлики, чтобы каждый элемент системы: радиатор, калорифер, ветвь, плечо, стояк, магистраль – имели проектные расходы. При этом определение и выставление настроек термостатических клапанов является частью процесса наладки.
Как было указано выше, в г. Хабаровске проектируются и монтируются только гидравлически разбалансированные однотрубные системы отопления без термостатов.
Покажем на примерах новых, вводимых в эксплуатацию объектах к чему это приводит.
Пример 1. Детский дом №1 по ул. Ленина.
Введен в эксплуатацию в конце 2001г. Система ГВС закрытая, а система отопления однотрубная, без термостатов, подключенная по независимой схеме. Проектировал – Хабаровскгражданпроект, монтаж системы отопления и ГВС – Хабаровское монтажное управление №1. Проектирование и монтаж теплового пункта – специалисты ХЦЭС. Тепловой пункт находится на техническом обслуживании в ХЦЭС.
После запуска системы теплоснабжения выявились следующие недостатки:
Система отопления не сбалансирована. В одних помещениях наблюдался перегрев: 25-27оС, а в других недогрев: 12-14оС. Это связано с несколькими причинами:
для балансировки системы отопления проектировщики предусмотрели шайбы, а монтажники их не врезали, мотивируя это тем, что «все равно они засорятся через 2-3 недели»;
отдельные отопительные приборы выполнены без замыкающих участков, их поверхность завышена, что приводит к перегреву отдельных помещений.
Кроме того, для того чтобы обеспечить циркуляцию и нормальную температуру, в недогретых помещениях, концевые стояки работали на «сброс», что приводило к утечкам воды 20-30 т в сутки и это при независимой схеме!!!
Система приточной вентиляции не работает, а это недопустимо, так как в здании установлены термостатические окна с низкой воздухопроницаемостью.
По просьбе Заказчика специалисты ХЦЭС установили на стояках балансировочную арматуру и провели балансировку системы отопления. В результате этого температура в помещениях выровнялась и составила 20-22оС, подпитка системы сократилась до нуля, а экономия тепловой энергии составила около 30%. Наладка системы вентиляции не проводилась.
Пример 2. Институт повышения квалификации врачей.
Введен в эксплуатацию в октябре 2002 . Система ГВС закрытая, система отопления однотрубная без термостатов подключена по независимой схеме.
После запуска системы отопления были выявлены следующие недостатки: система отопления не сбалансирована, арматура для регулировки системы отсутствует (проектом даже не предусмотрены дроссельные шайбы). Температура воздуха в помещениях изменяется от 18 до 25оС, причем для того, чтобы довести температуру в угловых помещениях до 18оС пришлось увеличить расход тепла в 3 раза по сравнению с требуемым. То есть если теплопотребление здания уменьшить в три раза, то в большинстве помещений будет температура 18-20оС, но при этом в угловых помещениях температура не превысит 12оС.
Эти примеры распространяются на все вновь введенные здания с независимыми схемами отопления в г. Хабаровске: цирк и гостиница цирка (в гостинице открыты форточки (перетоп), а в закулисной части холодно (недотоп), жилые дома по ул. Фабричной, ул. Дзержинского, терапевтический корпус Железнодорожной больницы и т. д.
С проблемой №2 тесно сплетается проблема №3.
Проблема №3. Необходимость в техническом обслуживании современных систем теплоснабжения.
Как показывает наш трехлетний опыт, современные системы теплоснабжения зданий, выполненные с использованием энергосберегающих технологий, в процессе эксплуатации нуждаются в постоянном уходе. Для этого необходимо привлекать высококвалифицированных, специально обученных специалистов, используя специальные технологии и инструменты.
Покажем это на примерах автоматизированных тепловых пунктов внедренных в г. Хабаровске.
Пример 1. Тепловые пункты, не обслуживаемые специализированными организациями.
В 1998 г. в г. Хабаровске было введено в эксплуатацию здание Хакобанка по улице Ленинградской г. Хабаровска. Система теплоснабжения здания была спроектирована и смонтирована специалистами из Финляндии. Оборудование использовано также финское. Система отопления выполнена по независимой двухтрубной схеме с термостатами, снабжена балансировочной арматурой. Система ГВС закрытая. Обслуживалась система специалистами банка. В первые три года эксплуатации во всех помещениях поддерживалась комфортная температура. Через 3 года пошли жалобы от жильцов отдельных квартир на то, что в квартире «холодно». Жильцы обратились в ХЦЭС с просьбой обследовать систему и помочь наладить «комфортный» режим.
Обследование ХЦЭС показало: система автоматического регулирования не работает (вышел из строя погодный регулятор ECL), теплообменные поверхности теплообменника системы отопления засорились, что привело к уменьшению его теплопроизводительности примерно на 30% и разбалансировке системы отопления.
Аналогичная картина наблюдалась на жилом доме по ул. Дзержинского 4, где современная система теплоснабжения обслуживалась силами жильцов.
Пример 2. Тепловые пункты, обслуживаемые специализированными организациями.
На сегодняшний день на обслуживании в Хабаровском центре энергоресурсосбережения находится около 60 автоматизированных тепловых пунктов. Как показал наш опыт эксплуатации, в процессе обслуживания таких узлов возникают следующие проблемы:
очистка фильтров, установленных перед теплообменниками ГВС и отопления и перед циркуляционными насосами;
контроль за работой насосов и теплообменного оборудования;
контроль за работой автоматики и регулирования.
Качество теплоносителя и, даже холодной воды, в г. Хабаровске очень низкое и поэтому постоянно возникает проблема очистки фильтров, которые установлены в первичном контуре теплообменников ГВС и отопления, перед циркуляционными насосами во вторичном контуре теплообменников. Например, при запуске в эксплуатацию в отопительном сезоне 2002/03г. блока жилых домов по переулку Фабричному, в каждом из которых был смонтирован ИТП, фильтр установленный в первичном контуре теплообменника отопления пришлось промывать 1-2 раза в день в течение первых 10-ти дней после запуска и затем, в последующие две недели, не менее одного раза в 2-3 дня. На здании цирка и гостиницы цирка в отопительном сезоне 2001/02г. пришлось промывать фильтр холодной воды 1-2 раза в неделю.
Казалось бы, что очистка фильтра, установленного в первичном контуре, это рутинная операция, которую может выполнить неквалифицированный специалист. Однако, для очистки (проливки) фильтра необходимо на какое-то время остановить всю систему теплоснабжения, отключить холодную воду, отключить циркуляционный насос в системе ГВС и затем все это снова запустить. Также при отключении системы теплоснабжения для очистки фильтров желательно отключить, а потом перезапустить систему автоматики, чтобы при запуске системы теплоснабжения не возникало гидроударов. При этом если при отключении первичного контура системы ГВС не отключить вторичный контур по холодной воде, то из-за температурных расширений в теплообменнике ГВС может появиться «течь».
Вторая проблема, которая возникает в процессе эксплуатации автоматизированных тепловых пунктов – это проблема контроля за работой оборудования: насосов, теплообменников, приборов учета и регулирования.
Например, часто перед запуском после межотопительного периода циркуляционные насосы находятся в «сухом» состоянии, т. е. не заполнены сетевой водой, и их сальниковые уплотнения засыхают, а иногда даже прикипают к валу насоса. Поэтому перед запуском, чтобы избежать протечек сетевой воды через сальниковые уплотнения, необходимо насос несколько раз плавно прокрутить вручную.
Также в процессе эксплуатации необходимо периодически следить за работой регулирующих клапанов, чтобы они не работали постоянно в режиме «закрыто» или «открыто», регуляторов давления, перепада давления и т. д., кроме того необходимо следить за изменением гидравлического сопротивления и теплопередающей поверхности теплообменников.
Контролировать изменения гидравлического сопротивления и площади теплопередающей поверхности теплообменников можно регистрируя или периодически измеряя температуру теплоносителя в первичном и во вторичном контуре теплообменника и перепад давлений и расход теплоносителя в этих контурах.
Например, в отопительном сезоне 2001/02г. в гостинице цирка через месяц после начала эксплуатации резко упала температура горячей воды. Исследования показали, что в начале эксплуатации расход теплоносителя в первичном контуре системы ГВС составлял составлял 2-3 т/час, а через месяц после начала эксплуатации он составлял не более 1 т/час. Это произошло из-за того что первичный контур теплообменника ГВС оказался забит продуктами сварки (окалиной), что привело к увеличению гидравлического сопротивления и уменьшению площади теплопередающей поверхности. После того, как теплообменник был разобран и промыт, температура горячей воды достигла нормы.
Как показал опыт обслуживания современных систем теплоснабжения с автоматизированными тепловыми пунктами, в процессе их эксплуатации необходимо осуществлять постоянный контроль и вносить коррективы в работу систем автоматики и регулирования. В Хабаровске в последние 3-5 лет температурный график 130/70 не соблюдается: даже при температуре ниже минус 30оС температура теплоносителя на входе у абонентов не превышает 105оС. Поэтому специалисты ХЦЭС, обслуживающие автоматизированные тепловые пункты, на основе статистических наблюдений за режимом теплопотребления объектов перед началом отопительного сезона для каждого объекта вносят в контроллер свой температурный график, который затем корректируют в течение отопительного сезона.
Проблема обслуживания автоматизированных тепловых пунктов тесно связана с отсутствием достаточного количества высококвалифицированных специалистов, которых целенаправленно не готовят в пределах Дальневосточного региона. В Хабаровском центре энергоресурсосбережения обслуживанием автоматизированных тепловых узлов занимаются специалисты – выпускники кафедры «Теплотехника, теплогазоснабжение и вентиляция» Хабаровского государственного технического университета, прошедшие обучение на фирмах-изготовителях оборудования (Данфос, Альфа-Лаваль и т. д.).
Отметим, что ХЦЭС является региональным сервисным центром фирм-поставщиков оборудования для автоматизированных тепловых пунктов, таких как: Данфос (Дания) – поставщик контроллеров, термодатчиков, регулирующих клапанов и т. д.; Вило (Германия) - поставщик циркуляционных насосов и насосовой автоматики; Альфа-Лаваль (Швеция-Россия) – поставщик теплообменного оборудования; ТБН «Энергосервис» (Москва) – поставщик теплосчетчиков и пр.
В соответствии с соглашением о сервисном партнерстве, заключенном между ХЦЭС и фирмой Альфа-Лаваль, ХЦЭС проводит работы по обслуживанию теплообменного оборудования фирмы Альфа-Лаваль, используя для этого персонал, прошедший обучение в сервисном центре Альфа-Лаваль, и используя для этих целей только разрешенные к эксплуатации Альфа-Лаваль оригинальные запасные части и материалы.
В свою очередь Альфа-Лаваль поставило ХЦЭС оборудование, инструмент, расходные материалы и запасные части, необходимые для обслуживания пластинчатых теплообменников компании Альфа-Лаваль, провело обучение специалистов ХЦЭС в своем сервисном центре.
Это позволяет ХЦЭС осуществлять разборную и безразборную промывку теплообменников непосредственно у потребителей в г. Хабаровске.
Поэтому все вопросы, связанные с эксплуатацией и ремонтом оборудования автоматизированных тепловых пунктов, решаются на месте - в г. Хабаровске.
Отметим также, что в отличие от других фирм, занимающихся внедрением автоматизированных тепловых пунктов, ХЦЭС устанавливает более дорогое, но более надежное и более качественное оборудование (например, разборные, а не паянные теплообменники, насосы с сухим, а не мокрым ротором). Это гарантирует надежную работу оборудования в течение 8-10 лет.
Использование же дешевого, но менее качественного оборудования не гарантирует бесперебойную работу автоматизированных тепловых пунктов. Как показывает наш опыт, а также опыт других фирм , это оборудование выходит из строя, как правило, через 2-3 года и потребитель начинает ощущать тепловой дискомфорт (см., например, пример 1 из проблемы № 3).
Тепловые испытания теплообменников, проведенные в г. Санкт-Петербурге , показали:
Снижение тепловой эффективности теплообменного аппарата составляет после первого года 5%, после второго – 15%, после третьего более 25 %, после четвертого – 35 %, а после пятого – 40-45%;
Снижение теплопроизводительности аппарата и коэффициента теплопередачи связано с загрязнением поверхности теплообмена как со стороны первичного контура, так и со стороны вторичного контура; эти загрязнения проявляются в виде отложений, причем со стороны первичного контура отложения имеют коричневый цвет, а со стороны вторичного – черный;
Коричневый цвет отложений определяется в основном окислами железа, которые образуются в сетевой воде из-за коррозии внутренней поверхности трубопроводов теплотрасс; данные загрязнения со стороны первичного контура легко удаляются с помощью мягкой тряпки под струей теплой воды;
Черный цвет отложений вторичного контура определяется, в основном, органическими соединениями, которые в большом количестве находятся в воде вторичного контура, которая циркулирует по замкнутому контуру системы отопления здания и не подвергается никакой очистке; удалить отложения со стороны вторичного контура тем же способом, что и с первичного не удается, так как они являются не рыхлыми, а плотными; для очистки теплообменных пластин со стороны вторичного контура приходилось пластины замачивать в керосине на 15-20 мин., а затем они протирались со значительными усилиями влажными тряпками, смоченными в керосине;
Вследствие того, что биологические отложения, образующиеся на пластинах со стороны вторичного контура, имеют очень сильное сцепление (адгезию) с поверхностью металла, безразборная химическая промывка вторичного контура не дает удовлетворительных результатов .
Дешевое оборудование, как правило, используют те внедренческие фирмы, которые не занимаются сервисным обслуживанием внедренного ими оборудования, так как для этого требуется иметь соответствующее оборудование и материалы, а также квалифицированный персонал, т. е. вкладывать значительные средства в развитие своей производственной базы.
Поэтому потребитель находится перед выбором:
Затратить минимум капвложений и внедрить дешевое оборудование (мокророторные насосы, паяные теплообменники и т. д.), которое через 2-3 года в значительной мере утратит свои свойства или придет в полную негодность; при этом эксплуатационные затраты на ремонт и поддержание оборудования после 2-3 лет резко возрастут и могут быть того же порядка, что и первоначальные вложения;
Затратить максимум капвложений, внедрить надежное дорогостоящее оборудование (разборные теплообменники проверенных фирм, например. Альфа-Лаваль, сухороторные насосы с частотным приводом, надежную автоматику и т. д.) и за счет этого значительно снизить свои эксплуатационные расходы.
Выбор остается за потребителем, но не надо забывать, что «скупой платит дважды».
Резюмируя вышеизложенное можно сделать следующие выводы:
1. В Хабаровске в последние 2-3 года начался процесс перехода с устаревших «открытых» систем к современным «закрытым» системам теплоснабжения с внедрением энергосберегающих технологий. Однако чтобы ускорить этот процесс и сделать его необратимым, необходимо:
1.1. Переломить психологию Заказчиков, проектировщиков, монтажников и эксплуатационников, которая заключается в следующем: проще и дешевле внедрять устаревшие традиционные схемы теплоснабжения с однотрубными системами отопления и элеваторными узлами, которые не нуждаются в обслуживании и регулировке, чем создавать себе дополнительную боль и финансовые затруднения, переходя к современным системам теплоснабжения с системами автоматики и регулирования. То есть построить объект с минимумом капитальных затрат, затем передать его, например, муниципалитету, который должен будет выискивать средства на эксплуатацию этого объекта. В результате крайним снова окажется потребитель (гражданин), который будет потреблять «ржавую» воду из системы теплоснабжения, мерзнуть зимой от недотопа и страдать от жары в переходный период (октябрь, апрель) при перетопе, осуществляя форточное регулирование, что приводит к простудным заболеваниям из-за сквозняков.
1.2. Создать специализированные организации, которые бы занимались всей цепочкой: от проектирования и монтажа до пусконаладки и обслуживания современных систем теплоснабжения. Для этой цели необходимо проводить целенаправленную работу по подготовке специалистов в области энергосбережения.
2. При проектировании этих систем необходимо тесно увязывать между собой все элементы систем теплоснабжения: отопление, вентиляцию и ГВС, учитывая не только требования СНиПов и СП, но и рассматривая их под углом с точки зрения эксплуатационников.
3. В отличие от устаревших, традиционных систем, современные системы нуждаются в обслуживании, которое могут осуществлять только специализированные организации, имеющие специальное оборудование и высококвалифицированных специалистов.
СПИСОК ЛИТЕРАТУРЫ
1. О практике применения двухтрубных систем отопления// Инженерные системы. АВОК. Северо-Запад, №3, 2002г.
2. Лебедев гидравлики систем ОВК// АВОК, №5, 2002г.
3. Иванов эксплуатации пластинчатых подогревателей в условиях г. Санкт-Петербурга// Новости теплоснабжения, №5, 2003г.
Министерство образования Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Магнитогорский государственный технический университет
им. Г.И. Носова»
(ФГБОУ ВПО «МГТУ»)
Кафедра Теплоэнергетических и энергетических систем
Реферат
по дисциплине «Введение в направление»
на тему: «Централизованное и децентрализованное теплоснабжение»
Выполнил: студент Султанов Руслан Салихович
Группа: зЭАТБ-13 «Теплоэнергетика и теплотехника»
Шифр: 140100
Проверил: Агапитов Евгений Борисович, д.т.н.
Магнитогорск 2015 г.
1.Введение 3
2.Централизованное теплоснабжение 4
3.Децентрализованное теплоснабжение 4
4.Виды систем отопления и принципы их действия 4
5.Современные системы отопления и горячего водоснабжения в России 10
6.Перспективы развития теплоснабжения в России 15
7.Заключение 21
Введение
Проживая в умеренных широтах, где основная часть года холодная, необходимо обеспечить теплоснабжение зданий: жилых домов, офисов и других помещений. Теплоснабжение обеспечивает комфортное проживание, если это квартира или дом, продуктивную работу, если это офис или склад.
Сначала разберёмся, что же понимают под термином «Теплоснабжение». Теплоснабжение - это снабжение систем отопления здания горячей водой либо паром. Привычным источником теплоснабжения являются ТЭЦ и котельные. Существует два вида теплоснабжения зданий: централизованное и местное. При централизованном – снабжаются отдельные районы (промышленные или жилые). Для эффективной работы централизованной сети теплоснабжения, её строят, разделяя на уровни, работа каждого элемента заключается в выполнении одной задачи. С каждым уровнем задача элемента уменьшается. Местное теплоснабжение – снабжение теплом одного или несколько домов. Централизованные сети теплоснабжения имеют ряд преимуществ: снижение расходов топлива и сокращение затрат, использование низкосортного топлива, улучшение санитарного состояния жилых районов. Система централизованного теплоснабжения включает в себя источник тепловой энергии (ТЭЦ), тепловой сети и теплопотребляющих установок. ТЭЦ комбинированно вырабатывает тепло и энергию. Источниками местного теплоснабжения являются печи, котлы, водонагреватели.
Системы теплоснабжения отличаются различными температурами и давлением воды. Это зависит от требований потребителей и экономических соображений. При увеличении расстояния, на которое необходимо «передать» тепло, увеличиваются экономические затраты. В настоящее время расстояние передачи тепла измеряется десятками километров. Системы теплоснабжения делятся по объёму тепловых нагрузок. Системы отопления относят к сезонным, а системы горячего водоснабжения – к постоянным.
Централизованное теплоснабжение
Централизованное теплоснабжение характеризуется наличием обширной разветвлённой абонентской теплосети с запитыванием многочисленных теплоприемников (заводы, предприятия, здания, квартиры, жилые помещения и прочие).
Основными источниками для централизованного теплоснабжения являются: - теплоэлектроцентрали (ТЭЦ), которые также попутно вырабатывают и электроэнергию; - котельные (водогрейные и паровые).
Децентрализованное теплоснабжение
Децентрализованное теплоснабжение характеризуется системой теплоснабжения, при которой источник тепла совмещен теплоприёмником, то есть теплосеть незначительна или отсутствует вообще. Если в помещениях используются отдельные индивидуальные электрические или местные отопительнын теплоприемники, то такое тепловое снабжение будет индивидуальным (примером может служить обогрев собственной малой котельной всего здания). Мощность таких теплоисточников, как правило,совсем мала и зависит от потребности их владельцев. Теплопроизводительность таких индивидуальных теплоисточников не больше 1 Гкал/ч или 1,163 МВт.
Основные виды такого децентрализованного отопления:
Электрическое, а именно: - прямое; - аккумуляционное; - теплонасосное; - печное. Малыми котельными.
Как улучшить показатели отопительной системы и сделать ее обслуживание более комфортным для собственника частного дома. Для решения этой задачи необходимо знать новые тенденции и разработки в области теплоснабжения. Все современные системы отопления частного дома должны быть не только удобны, но и иметь оптимальные эксплуатационные характеристики.
Требования к современному отоплению дома
Назначение любого теплоснабжения – поддержание комфортного уровня температуры в помещении. Однако помимо этого современное отопление частного дома должно отвечать целому ряду дополнительных требований.
Прежде всего – это максимальная безопасность для проживающих в доме. Т.е. никакой элемент теплоснабжения или его работа не должны нанести вред человеку. В особенности это относится к относительно новым полимерным материалам изготовления. Также при выборе системы следует учитывать такие факторы:
- Экономическая целесообразность . Важно, чтобы количество получаемой тепловой энергии стремилось к аналогичному показателю потребляемой. Современное отопление частного дома должно иметь КПД, близкий к 100%;
- Минимальные ресурсы на обслуживание . У традиционных отопительных схем есть несколько существенных недостатков – большое количество сажи (твердотопливные котлы и печи), необходимость ежегодной очистки труб, постоянный контроль за объемом топлива и режимом работы. Современные виды отопления частного дома практически полностью исключают влияние этих факторов на работу;
- Максимальная автономность работы .
Что нужно предпринять, чтобы выполнить эти условия максимально? Для этого рекомендуется изучить предложения на рынке отопительных приборов и схем, выбрав оптимальную сборку для конкретного дома.
В большинстве случаев экономически целесообразнее провести модернизацию существующей системы, чем делать полностью новую.
Способы улучшения характеристик отопления
Далеко не всегда современные котлы отопления или трубы из новых материалов являются единственными факторами улучшения параметров системы. Сначала специалисты рекомендуют провести комплексный анализ внешних и внутренних факторов, влияющих на характеристики теплоснабжения.
Определяющим из них является уменьшение тепловых потерь здания. Именно они напрямую влияют на оптимальную мощность, которой должно обладать современное отопление без электричества или традиционного типа. Однако при этом следует учитывать нормы вентиляции – воздухообмен в каждой комнате должен соответствовать нормативам. Современные способы отопления частного дома не должны ухудшать комфорта проживания.
Способы оптимизации работы отопительной системы можно условно разделить на несколько видов – установка котлов с высоким показателем КПД, монтаж труб с пониженной теплоотдачей и применение батарей с хорошим коэффициентом теплопередачи.
Модернизация системы отопления
Для повышения текущих параметров системы можно поменять ряд ее компонентов. Подобное улучшение выполнятся только после расчета текущих характеристик и выявления «слабых» мест в отопительной схеме.
Самый простой способ – установить бак косвенного нагрева (теплоаккумулятор). Современное электроотопление в совокупности с многотарифным счетчиком дадут возможность снизить затраты на энергоноситель. Важно правильно рассчитать объем бака.
Также можно сделать более глобальные изменения в схеме:
- Монтаж коллекторной разводки трубопроводов . Актуален для домов с большой площадью;
- Замена стальных труб на полимерные меньшего диаметра . Это даст возможность уменьшить общий объем теплоносителя, что повлечет за собой экономию на его нагреве;
- Установка контролирующих устройств – программаторов, терморегуляторов и т.д. Эти современные приборы отопления предназначены для слежения за текущими параметрами системы и изменения режима ее работы в зависимости от настроек.
Также значительно улучшит характеристики установка нового котла отопления. Современные газовые модели потребляют на порядок меньше энергоносителя и имеют встроенные приборы контроля и группы безопасности. Нередко современные методы отопления загородного дома предусматривают монтаж пиролизных котлов долгого горения, работающих на топливных гранулах или брикетах.
Необходимо заранее проверить, смогут ли новые элементы отопления монтироваться со старыми. Например – в открытом отоплении установка полипропиленовых труб небольшого диаметра невозможна. Они не смогут обеспечить естественную циркуляцию без монтажа насоса.
Альтернативное теплоснабжение дома
В состав современного отопления частного дома должны входить новые методы получения тепловой энергии. В отличие от стандартных они имеют низкое энергопотребление, но при этом характеризуются небольшим количеством вырабатываемого тепла.
В качестве источника тепловой энергии можно использовать солнечное излучение или почвенный нагрев теплоносителя. Все зависит от климатических условий, площади участка и финансовых возможностей:
- . Работает по принципу разницы температур между различными слоями почвы. Для организации системы потребуются большие затраты и специальное оборудование – тепловой насос;
- Солнечный коллектор . Это один из видов современного отопления без электричества. Напрямую зависит от интенсивности солнечного излучено в конкретном регионе. В летний период может использоваться в качестве ГВС.
Зачастую эти системы устанавливаются в качестве вспомогательных для уменьшения затрат на отопление. Каждая из них требует детального просчета для выявления целесообразности приобретения и монтажа. Так, комплексная геотермальная установка для дома площадью 150 м² будет стоить около 700 тыс. рублей.
Котлы
Центральным узлом любой классической отопительной схемы является котел. От его функциональных возможностей во многом зависят параметры теплоснабжения. Так, современные электрокотлы для отопления дома могут занимать немного места и при этом вырабатывать оптимальное количество тепловой энергии.
К отопительному оборудованию этого вида предъявляются довольно жесткие требования. Оно должно быть максимально безопасно в эксплуатации, технические характеристики соответствовать существующим нормам, а управление иметь понятно-интуитивный интерфейс.
Электрические котлы отопления
Установка электрических нагревательных приборов актуальна в том случае, если площадь помещения относительно небольшая или нет подвода магистрального газа. На практике для организации современного электроотопления можно применять не только котлы классической конструкции с ТЭНом, но и новые модели, у которых другой принцип работы.
Принцип работы электродного котла заключается в создании движения электродов в паре катод-анод. Это приводит к нагреву воды и повышению давления. В результате возникает циркуляция теплоносителя. У современных котлов отопления электродного типа помимо зоны нагрева есть блоку управления, а также предусмотрена возможность подключения к программатору.
Для получения большего количества тепла можно установить индукционный котел. Он работает по принципу электромагнитной индукции, возникающей между сердечником и обмоткой. Для обеспечения безопасности катушка и сердечник полностью изолированы от контакта с водой.
Эти современные виды электрического отопления частного дома имеют несколько особенностей. Главным из них является низкая инерционность – нагрев воды происходит очень быстро. Однако помимо этого нужно учитывать следующие особенности эксплуатации:
- Текущие расходы на отопление. Нагрев теплоносителя с помощью электроприборов считается наиболее затратным;
- Приобретение и монтаж дополнительных элементов – расширительного бака, циркуляционного насоса, группы безопасности;
- У электродных котлов особые требования к теплоносителю. Он должен содержать относительно большое количество солей для поддержания реакции электролиза.
Но несмотря на эти факторы, электроотопление нашло широкое применение в зданиях с отсутствием газовых магистралей. Еще одним преимуществом является возможность организации отдельных контуров нагрева воздуха в каждом помещении.
Во время установки электрических котлов необходим монтаж УЗО. Также рекомендуется провести отдельную линию электропроводки.
Газовые конденсационные котлы отопления
Одним из современных способов отопления частного дома является установка газовых конденсационных котлов. Внешне они практически ничем не отличаются от традиционных. Разница состоит в дополнительном внутреннем теплообменнике.
Суть новаторского дополнения заключается в использовании тепловой энергии продуктов сгорания. Относительная сложная сеть внутреннего дымохода снижает температуру угарных газов до образования точки росы на дополнительном теплообменнике. Он соединен с обратной трубой отопления. В результате этого вода в нем нагревается из-за воздействия горячего конденсата.
По заверениям производителя у этого современного прибора отопления КПД может быть выше 100%. На практике он достигает 99%, что является рекордом для нагревательных котов. Но для правильного выбора определенной модели следует учитывать такие факторы:
- Полученный конденсат нельзя сливать в канализационную систему. Он должен храниться в герметичной емкости;
- Для каждой модели котла этого типа есть рекомендуемый температурный режим работы, при котором происходит формирование конденсата на поверхности вторичного теплообменника;
- Высокая стоимость оборудования.
Так как этот современный метод отопления частного дома предусматривает низкотемпературный режим работы – рекомендуется увеличить площади радиаторов и батарей. Это влечет дополнительные затраты на приобретение компонентов системы.
В низкотемпературных газовых котлах можно использовать пластиковые дымоходы, так как степень нагрева угарных газов будет невысокой – до +60°С.
Твердотопливные котлы длительного горения
Альтернативной современному печному отоплению частного дома являются котлы длительного горения. В отличие от традиционных моделей нагрев теплоносителя происходит не за счет сгорания топлива, а в результате воспламенения древесных или угольных газов.
Для этого ограничивают приток воздуха в камеру сгорания, что влечет за собой тление твердого топлива. Выделяемые газы по каналам поступают в зону дожига, где происходит нагнетание кислорода с помощью вентилятора или турбины. В результате газовая смесь воспламеняется, выделяя большое количество тепловой энергии.
Преимуществами этого современного способа обогрева частного дома являются:
- Экономичный расход топлива;
- Долгое время работы на одной загрузке дров или угля;
- Возможность регулировки степени нагрева теплоносителя с помощью интенсивности работы вентилятора.
Одним из недостатков этого современного отопления без электроэнергии является низкая температура угарных газов. Это приводит к образованию конденсата на дымоходной трубе. Поэтому все котлы длительного горения должны комплектоваться теплоизолированной дымоходной системой.
Стоимость всех вышерассмотренных котлов отопления отличается в зависимости от фирмы-производителя и удельной мощности.
Особенностью работы котлов длительного сгорания является большое количество сажи в камере сгорания и на теплообменнике. Поэтому их чистку нужно проводить чаще, чем у классических моделей.
Отопление дома без электричества
Но что делать, если установка современных электрокотлов для отопления дома нецелесообразна, а газовая магистраль в доме отсутствует? В качестве альтернативы можно улучшить систему печного или каминного отопления. Для этого необходимо установить систему воздушных каналов, соединенных с теплообменником печи.
Современное печное или каминное отопление частного дома с дополнительными воздушными каналами использует всю энергию от сгорания топлива. Для правильной организации необходимо продумать систему трубопроводов. Чаще всего они располагаются вверху, скрытые декоративным потолком. Для регулирования мощности притока горячего воздуха в каждом помещении должны быть установлены дефлекторы.
Кроме этого, следует знать особенности комплектации, свойственные только этому современному методу отопления загородного коттеджа:
- Для нормальной вентиляции следует установить канал забора воздуха с улицы. Во избежание попадания пыли в систему монтируют фильтры;
- Улучшить циркуляцию потоков можно с помощью вентиляторов или турбин. Они же являются частью современного электроотопления дома, если дополнительно установить электрические нагревательные элементы;
- Обязательная герметичность теплообменника. Ни в коем случае угарный газ не должен попасть в воздушные каналы.
Если же анализировать стоимость обустройства, то печное или каминное виды отопления частного дома будут на порядок дороже, чем традиционные способы нагрева воздуха. Однако самая простая схема может включать в себя только воздушные каналы без системы фильтрации и принудительной циркуляции горячих воздушных потоков.
Если в отопительной системе нет канала притока воздуха с улицы – следует обеспечить вентиляцию в доме. Она может быть принудительная или естественная.
Радиаторы и трубы отопления
Помимо современных отопительных котлов не менее важными компонентами являются трубы и радиаторы. Они необходимы для эффективной передачи тепловой энергии воздуху в помещении. Во время проектирования системы необходимо решить две задачи – уменьшить тепловые потери при транспортировке теплоносителя по трубам и улучшить теплоотдачу батарей.
Любые современные радиаторы отопления должны не только иметь хорошие показатели теплопередачи, но и удобную для ремонта и обслуживания конструкцию. Это же касается трубопроводов. Их монтаж не должен вызывать затруднений. В идеале установку может осуществить сам владелец дома без применения дорогого оборудования.
Современные радиаторы отопления
Для увеличения теплоотдачи в качестве основного материала изготовления батарей все чаще используют алюминий. Он имеет хорошие показатели теплопроводности, а для получения нужной формы можно применять технологию литья или сварки.
Но нужно учитывать, что алюминий очень чувствителен к воздействию воды. Современные чугунные радиаторы отопления лишены этого недостатка, хотя и обладают меньшей энергоемкостью. Для решения этой проблемы была разработана новая конструкция батарей, у которых водяные каналы изготавливаются из стальных или медных труб.
Эти современные трубы для отопления практически не подвергаются коррозии, имея минимальные размеры и толщину стенок. Последнее необходимо для эффективной тепловой передачи алюминию энергии от горячей воды. У современных радиаторов отопления есть несколько преимуществ, заключающихся в следующем:
- Долгий срок эксплуатации – до 40 лет. Однако он зависит от условий работы и своевременного выполнения прочистки системы;
- Возможность выбора способа подключения – верхнее, нижнее или боковое;
- В комплектацию может входить кран Маевского и терморегулятор.
В большинстве случаев модели современных чугунных радиаторов отопления делают дизайнерскими. Они имеют классические формы, некоторые из них изготавливаются в напольном варианте с элементами художественной ковки.
КПД радиатора отопления зависит от правильной установки и способа подключения. Это обязательно учитывается при монтаже системы.
Современные трубы отопления
Выбор современных труб отопления во многом зависит от материала их изготовления. В настоящее время чаще всего используют полимерные магистрали из полипропилена или сшитого полиэтилена. Они имеют дополнительный армирующий слой из алюминиевой фольги или стекловолокна.
Однако они имеют один существенный недостаток – относительно низкий порог температурного воздействия до +90°С. Это влечет большое температурное расширение и как следствие – повреждение трубопровода. Альтернативой полимерным трубам могут служить изделия из других материалов:
- Медные . С точки зрения функциональности медные трубопроводы соответствуют всем требованиям к отопительной системе. Они просты в монтаже, практически не изменяют форму даже при экстремально высоких температурах теплоносителя. Даже при замерзании воды стенки медных магистралей будут расширяться без повреждения. Недостаток – высокая стоимость;
- Нержавеющая сталь . Она не подвергается ржавлению, ее внутренняя поверхность имеет минимальный коэффициент шероховатости. К недостаткам можно отнести стоимость и трудоемкий монтаж.
Как правильно подобрать оптимальную комплектацию современного отопления? Для этого необходимо воспользоваться комплексным подходом – сделать правильный расчет системы и согласно полученным данным выбрать котел, трубы и радиаторы с соответствующими эксплуатационными характеристиками.
В видеоматериале показан пример современного отопления дома с помощью системы теплый пол:
Отопительный сезон в России длится около семи месяцев. Для владельцев частных домов и тех, кто только собирается ими стать вопрос эффективного отопления помещения становится сложной задачей, которую не так-то просто решить. Попробуем разобраться, что собой представляют современные системы отопления частного дома.
Чаще всего для отопления используют воду или различные антифризные жидкости, которые циркулируют по трубам. Жидкость нагревается при помощи газовых котлов, которые могут работать на жидком, твердом и газовом топливе. В последнее время в качестве нагревающих элементов стали использовать электродные и индукционные котлы.
Водяное отопление популярно за счет доступности и эффективности теплоносителя у владельцев коттеджей и прочего загородного жилья. Водяную систему легко смонтировать самостоятельно. Положительным моментом является то, что объем воды в системе остается постоянным.
Недостатки водяного отопления в длительном времени прогревания помещения, возможных протечках и разрывах труб. Нельзя отключать водяную систему зимой, так как вода замерзнет и разорвет трубы.
Прогрессивные отопительные системы
Устройство современных систем отопления частных домов принципиально отличается от традиционных способов обогрева. Отопительная техника с каждым годом стремительно развивается. Оборудование усовершенствуется, становится эффективнее.
Возникают новые источники энергии, отвечающие требованиям защиты окружающей природной среды и общему комфорту эксплуатации оборудования.
Инновационная разработка российских ученых – система инфракрасного отопления ПЛЭН. Она состоит из тончайшей полимерной пленки и резистивно-нагревательного элемента из углеродных нитей.
ПЛЭН излучает тепловую составляющую солнечного света, которая поглощается полом, потолком, мебелью и создает комфортную температуру помещения.
Характеристики
Максимальная температура поверхности этой конструкции – 60°C, но для создания наиболее комфортных условий в доме достаточно 30° – 40°С.
ПЛЭН можно уложить по всей поверхности основания помещения, накрыв сверху ламинатом или любым другим видом покрытия. Если же смонтировать систему на потолке, то вы получите ощущение тепла и комфорта как от солнца. Крепить конструкцию к стенам тоже можно, но ее эффективность от этого пострадает.
Одним из достоинств пленочного нагревателя является отсутствие жидкого теплоносителя. Это избавляет от установки сложных систем, протечек, замерзания жидкости. Кроме того, пленочные отопительные системы, имеют еще ряд преимуществ:
- не сушат воздух;
- отсутствуют интенсивные тепловые потоки;
- не создают конвективные потоки;
- пожаробезопасны;
- просты в монтаже;
- полностью безопасны для человека и окружающей среды.
Еще одним доводом в пользу ПЛЭН для загородного дома являются многолетние исследования ученых. Они доказали, что длинноволновое инфракрасное излучение при умеренной мощности оказывает полезное воздействие на организм человека.
Главный недостаток системы инфракрасного отопления – его высокая стоимость. Для устройства отопительной системы всего дома придется сделать серьезные денежные вложения, которые окупятся довольно не скоро.
Геотермальные системы
Инновация в отоплении частного дома – забор тепла из грунта, который находится на придомовом участке. Для этого используют геотермальную установку. Ее конструкция состоит из теплового насоса, работающего по принципу холодильника, только на обогрев.
Возле дома создается шахта, где необходимо расположить теплообменник. По нему грунтовые воды будут поступать в теплонасос, отдавать тепло, которое будет использоваться для обогрева строения.
При отоплении загородного дома в качестве теплоносителя используют антифриз. Для этого в шахте устанавливается специальный резервуар.
Очень просто использовать тепловую энергию, источником которой является солнечный свет. Новейшие системы отопления загородного дома, работающие от солнечной энергии, представляют собой коллектор и резервуар.
Структура трубок, из которых состоит коллектор, сводит потери тепла к минимуму. Исходя из конструкционных особенностей, солнечные коллекторы бывают вакуумные, плоские и воздушные.
Размещать их необходимо как можно выше.
Нюансы
Этот вид отопления подойдет только для теплых регионов страны, где яркое солнце светит хотя бы 20-25 дней в году. В противном случае должны быть установлены дополнительные системы отопления. Еще одним недостатком солнечных батарей является высокая стоимость и небольшой срок службы аккумуляторов, необходимых для накопления электроэнергии.
Гидротермальные системы
Если ваш загородный дом расположен рядом с незамерзающим водоемом, то необходимую теплоэнергию можно получать из воды.
Для этого на дно водоема укладывается зонд-теплообменник, а в доме монтируется тепловой насос. Чем больше размер зонда, тем эффективнее гидротермальная установка.
Воздушные системы
В теплых климатических зонах можно использовать систему воздух – воздух. Простейшие виды подобных теплонасосов – инверторные кондиционеры. Монтируются они как обычные кондиционеры. Эффективность их работы снижается при минусовой температуре, а при -30°C и ниже сводится к нулю.
Энергия ветра давно используется для получения электричества. Но ее также можно применять для обогрева загородного жилья. Учеными создан безредукторный ветроэлектрогенератор, который монтируется на вертикальной оси вращения на крыше дома. Для снижения шума при работе конструкции ось должна быть оснащена виброизолятором. В подвале размещают электрический водонагреватель и тепловой аккумулятор.
Это устройство довольно сложно в изготовлении, имеет большой размер и вес. Его долго и непросто монтировать. Для получения максимальной энергии ветра необходимо возвести достаточно высокую башню.
Плюсы и минусы
Несомненным достоинством этого вида отопления является его экологичность. Извлечение энергии из ветра не наносит никакого урона окружающей среде. Кроме того, эта энергия абсолютно бесплатна, а расходы на изготовление и монтаж оборудования относительно невелики.
Несмотря на несомненные достоинства, этот способ отопления загородных домов не пользуется популярностью, что связано с непостоянством силы и скорости ветра.
Электрообогрев помещений относится скорее к традиционным методам отопления, которые были модернизированы в последние десятилетия. Электрические приборы просты в эксплуатации, удобны и надежны. Их давно используют для местного обогрева.
Чтобы равномерно прогреть всю площадь помещения при помощи электричества используют теплые полы. Эта система удобна для использования в загородном частном доме.
Система «теплый пол»
Технология напольного отопления – это удобная и экономичная система прогрева помещения. В современных установках используются прогрессивные материалы. Для изготовления трубопроводов применяются легкие и прочные полимерные материалы.
Основой теплого электрического пола служит греющий кабель. Главное в этом виде отопления – качество кабеля, от которого зависит эффективность работы системы и длительность ее службы.
Теплые полы, использующие воду, не выделяют вредных веществ, электромагнитных излучений. Вода – дешевый и теплоемкий теплоноситель. Монтируется сеть трубопровода, по которой течет жидкость, между основанием и покрытием пола. По сравнению с электрической системой «теплый пол», этот вид отопления значительно дешевле.
Политика энергоснабжения, проводимая в последние годы, предполагает переход на возобновляемые источники энергии. Все чаще для производства электричества используется не газ и уголь, а солнце, ветер, энергия воды. Это экологически чистые источники энергии, которые не загрязняют выбросами и сбросами окружающую природную среду.
Энергосбережение в системах теплоснабжения
Выполнили: студенты гр.Т-23
Салаженков М.Ю
Краснов Д.
Введение
На сегодняшний день политика энергосбережения является приоритетным направлением развития систем энерго- и теплоснабжения. Фактически на каждом государственном предприятии составляются, утверждаются и воплощаются в жизнь планы энергосбережения и повышения энергоэффективности предприятий, цехов и пр..
Система теплоснабжения страны не исключение. Она довольно велика и громоздка, потребляет колоссальные объемы энергии и при этом происходят не менее колоссальные потери тепла и энергии.
Рассмотрим что из себя представляет система теплоснабжения, где происходят наибольшие потери и какие комплексы энергосберегающих мероприятий можно применить для увеличения «КПД» этой системы.
Системы теплоснабжения
Теплоснабжение – снабжение теплом жилых, общественных и промышленных зданий (сооружений) для обеспечения коммунально-бытовых (отопление, вентиляция, горячее водоснабжение) и технологических нужд потребителей.
В большинстве случаев теплоснабжение – это создание комфортной среды в помещении – дома, на работе или в общественном месте. Теплоснабжение включает в себя также подогрев водопроводной воды и воды в плавательных бассейнах, обогрев теплиц и т.д.
Расстояние, на которое транспортируется тепло в современных системах централизованного теплоснабжения, достигает нескольких десятков км. Развитие систем теплоснабжения характеризуется повышением мощности источника тепла и единичных мощностей установленного оборудования. Тепловые мощности современных ТЭЦ достигают 2-4 Ткал/ч, районных котельных 300-500 Гкал/ч. В некоторых системах теплоснабжения осуществляется совместная работа нескольких источников тепла на общие тепловые сети, что повышает надёжность, манёвренность и экономичность теплоснабжения.
Нагретая в котельной вода может циркулировать непосредственно в системе отопления. Горячая вода нагревается в теплообменнике системы горячего водоснабжения (ГВС) до более низкой температуры, порядка 50–60 °С. Температура обратной воды может оказаться важным фактором защиты котла. Теплообменник не только передает тепло от одного контура другому, но и эффективно справляется с перепадом давлений, который существует между первым и вторым контурами.
Необходимая температура подогрева пола (30 °С) может быть получена путем регулирования темпера туры циркулирующей горячей воды. Перепад температур может быть также достигнут при использовании трехходового клапана, смешивающего в системе горячую воду с обратной.
Регулирование отпуска тепла в системах теплоснабжения (суточное, сезонное) осуществляется как в источнике тепла, так и в теплопотребляющих установках. В водяных системах теплоснабжения обычно производится так называемое центральное качественное регулирование подачи тепла по основному виду тепловой нагрузки - отоплению или по сочетанию двух видов нагрузки - отопления и горячего водоснабжения. Оно заключается в изменении температуры теплоносителя, подаваемого от источника теплоснабжения в тепловую сеть, в соответствии с принятым температурным графиком (то есть зависимостью требуемой температуры воды в сети от температуры наружного воздуха). Центральное качественное регулирование дополняется местным количественным в тепловых пунктах; последнее наиболее распространено при горячем водоснабжении и обычно осуществляется автоматически. В паровых системах теплоснабжения в основном производится местное количественное регулирование; давление пара в источнике теплоснабжения поддерживается постоянным, расход пара регулируется потребителями.
1.1 Состав системы теплоснабжения
Система теплоснабжения состоит из следующих функциональных частей:
1) источник производства тепловой энергии (котельная, ТЭЦ, гелиоколлектор, устройства для утилизации тепловых отходов промышленности, установки для использования тепла геотермальных источников);
2) транспортирующие устройства тепловой энергии к помещениям (тепловые сети);
3) теплопотребляющие приборы, которые передают тепловую энергию потребителю (радиаторы отопления, калориферы).
1.2 Классификация систем теплоснабжения
По месту выработки теплоты системы теплоснабжения делятся на:
1) централизованные (источник производства тепловой энергии работает на теплоснабжение группы зданий и связан транспортными устройствами с приборами потребления тепла);
2) местные (потребитель и источник теплоснабжения находятся в одном помещении или в непосредственной близости).
Основные преимущества централизованного теплоснабжения перед местным - значительное снижение расхода топлива и эксплуатационных затрат (например, за счёт автоматизации котельных установок и повышения их кпд); возможность использования низкосортного топлива; уменьшение степени загрязнения воздушного бассейна и улучшение санитарного состояния населённых мест. В системах местного теплоснабжения источниками тепла служат печи, водогрейные котлы, водонагреватели (в том числе солнечные) и т. п.
По роду теплоносителя системы теплоснабжения делятся на:
1) водяные (с температурой до 150 °С);
2) паровые (под давлением 7-16 ат).
Вода служит в основном для покрытия коммунально-бытовых, а пар - технологических нагрузок. Выбор температуры и давления в системах теплоснабжения определяется требованиями потребителей и экономическими соображениями. С увеличением дальности транспортирования тепла возрастает экономически оправданное повышение параметров теплоносителя.
По способу подключения системы отопления к системе теплоснабжения последнии делятся на:
1) зависимые (теплоноситель, нагреваемый в теплогенераторе и транспортируемый по тепловым сетям, поступает непосредственно в теплопотребляющие приборы);
2) независимые (теплоноситель, циркулирующий по тепловым сетям, в теплообменнике нагревает теплоноситель, циркулирующий в системе отопления). (Рис.1)
В независимых системах установки потребителей гидравлически изолированы от тепловой сети. Такие системы применяются преимущественно в крупных городах - в целях повышения надёжности теплоснабжения, а также в тех случаях, когда режим давления в тепловой сети недопустим для тепло-потребляющих установок по условиям их прочности или же когда статическое давление, создаваемое последними, неприемлемо для тепловой сети (таковы, например, системы отопления высотных зданий).
Рисунок 1 – Принципиальные схемы систем теплоснабжения по способу подключения к ним систем отопления
По способу присоединения системы горячего водоснабжения к системе теплоснабжения:
1) закрытая;
2) открытая.
В закрытых системах на горячее водоснабжение поступает вода из водопровода, нагретая до требуемой температуры водой из тепловой сети в теплообменниках, установленных в тепловых пунктах. В открытых системах вода подаётся непосредственно из тепловой сети (непосредственный водоразбор). Утечка воды из-за неплотностей в системе, а также её расход на водоразбор компенсируются дополнительной подачей соответствующего количества воды в тепловую сеть. Для предотвращения коррозии и образования накипи на внутренней поверхности трубопровода вода, подаваемая в тепловую сеть, проходит водоподготовку и деаэрацию. В открытых системах вода должна также удовлетворять требованиям, предъявляемым к питьевой воде. Выбор системы определяется в основном наличием достаточного кол-ва воды питьевого качества, её коррозионными и накипеобразующими свойствами. В Украине получили распространение системы обоих типов.
По числу трубопроводов, используемых для переноса теплоносителя, различают системы теплоснабжения:
однотрубные;
двухтрубные;
многотрубные.
Однотрубные системы применяют в тех случаях, когда теплоноситель полностью используется потребителями и обратно не возвращается (например, в паровых системах без возврата конденсата и в открытых водяных системах, где вся поступающая от источника вода разбирается на горячее водоснабжение потребителей).
В двухтрубных системах теплоноситель полностью или частично возвращается к источнику тепла, где он подогревается и восполняется.
Многотрубные системы устраивают при необходимости выделения отдельных видов тепловой нагрузки (например, горячего водоснабжения), что упрощает регулирование отпуска тепла, режим эксплуатации и способы присоединения потребителей к тепловым сетям. В России преимущественное распространение получили двухтрубные системы теплоснабжения.
1.3 Виды потребителей тепла
Потребителями тепла системы теплоснабжения являются:
1) теплоиспользующие санитарно-технические системы зданий (системы отопления, вентиляции, кондиционирования воздуха, горячего водоснабжения);
2) технологические установки.
Использование нагретой воды для отопления помещений – дело совершенно обычное. При этом применяются самые различные методы переноса энергии воды для создания комфортной среды в помещении. Один из самых распространенных – использование радиаторов отопления.
Альтернативой радиаторам отопления служит подогрев пола, когда отопительные контуры расположены под полом. Контур подогрева пола обычно подключен к контуру радиатора отопления.
Вентиляция – фанкойл, подающий горячий воздух в помещение, обычно используется в общественных зданиях. Часто применяют комбинацию отопительных устройств, например, радиаторов отопления и подогрева пола или радиаторов отопления и вентиляции.
Горячая водопроводная вода стала частью повседневной жизни и ежедневных потребностей. Поэтому установка для горячего водоснабжения должна быть надежной, гигиеничной и экономичной.
По режиму потребления тепла в течение года различают две группы потребителей:
1) сезонные, нуждающиеся в тепле только в холодный период года (например, системы отопления);
2) круглогодичные, нуждающиеся в тепле весь год (системы горячего водоснабжения).
В зависимости от соотношения и режимов отдельных видов теплопотребления различают три характерные группы потребителей:
1) жилые здания (характерны сезонные расходы тепла на отопление и вентиляцию и круглогодичный - на горячее водоснабжение);
2) общественные здания (сезонные расходы тепла на отопление, вентиляцию и кондиционирование воздуха);
3) промышленные здания и сооружения, в том числе сельскохозяйственные комплексы (все виды теплопотребления, количественное отношение между которыми определяется видом производства).
2 Централизованное теплоснабжение
Централизованное теплоснабжение является экологически безопасным и надежным способом обеспечения теплом. Системы централизованного теплоснабжения распределяют горячую воду или, в некоторых случаях, пар из центральной котельной между многочисленными зданиями. Очень широк выбор источников, которые служат для получения тепла, включая сжигание нефти и природного газа или использование геотермальных вод. Использование тепла от низкотемпературных источников, например, геотермального тепла, возможно при применении теплообменников и тепловых насосов. Возможность использования неутилизированного тепла промышленных предприятий, излишков тепла от переработки отходов, промышленных процессов и канализации, целевых теплоцентралей или теплоэлектростанций в централизованном теплоснабжении, позволяет осуществить оптимальный выбор источника тепла с точки зрения и энергетической эффективности. Таким образом вы оптимизируете издержки и защищаете окружающую среду.
Горячая вода из котельной подается в теплообменник, который отделяет производственную площадку от распределительных трубопроводов сети центрального теплоснабжения. Затем тепло распределяется между конечными потребителями и через подстанции подается в соответствующие здания. В каждую из этих подстанций обычно входит по одному теплообменнику для отопления помещений и для горячего водоснабжения.
Существует несколько причин установки теплообменников для разделения теплоцентрали и сети центрального теплоснабжения. Там, где существуют значительные разности давлений и температур, которые могут нанести серьезный ущерб оборудованию и собственности, теплообменник может предохранить чувствительное отопительное и вентиляционное оборудование от попадания в них загрязненных или вызывающих коррозию сред. Еще одна важная причина разделения котельной, распределительной сети и конечных потребителей состоит в четком определении функций каждого компонента системы.
В теплоэлектроцентрали (ТЭЦ) тепло и электричество производятся одновременно, причем побочным продуктом является тепло. Тепло обычно применяется в системах центрального теплоснабжения, что ведет к повышению энергоэффективности и экономичности. Степень использования энергии, получаемой от сгорания топлива, составит 85–90 %. Эффективность будет выше на 35–40 %, чем в случае раздельного производства тепла и электроэнергии.
В ТЭЦ сжигание топлива разогревает воду, которая превращается в пар высокого давления и высокой температуры. Пар приводит в действие турбину, соединенную с генератором, производящим электроэнергию. После турбины пар конденсируется в теплообменнике. Тепло, выделенное в ходе этого процесса, затем подается в трубы центрального теплоснабжения и распределяется между конечными потребителями.
Для конечного потребителя централизованное теплоснабжение означает бесперебойное получение энергии. Система централизованного теплоснабжения более удобна и эффективна, чем небольшие индивидуальные системы отопления домов. Современные технологии сжигания топлива и очистки выбросов снижают негативное воздействие на окружающую среду.
В многоквартирных домах или других зданиях, отапливаемых центральными тепловыми пунктами, главным требованием является отопление, горячее водоснабжение, вентиляция и подогрев пола для большого количества потребителей при минимальных затратах энергии. Используя качественное оборудование в системе теплоснабжения, можно снизить общие расходы.
Другой очень важной задачей теплообменников в централизованном теплоснабжении является обеспечение безопасности внутренней системы путем отделения конечных потребителей от распределительной сети. Это необходимо из-за значительной разницы в величинах температур и давления. В случае аварии риск затопления может быть также сведен к минимуму.
В центральных тепловых пунктах часто встречается двухступенчатая схема подключения теплообменников (Рис.2, А). Такое подключение означает максимальное использование тепла и низкую температуру обратной воды при использовании системы горячего водоснабжения. Оно особенно выгодно при работе с теплоэлектроцентралью, где желательна низкая температура обратной воды. Данный тип подстанции может легко обеспечить теплоснабжение до 500 квартир, а иногда и более.
А) Двухступенчатое подключение Б) Параллельное подключение
Рисунок 2 – Схема подключения теплообменников
Параллельное подключение теплообменника ГВС (Рис.2, Б) менее сложно, чем двухступенчатое подключение, и может применяться при любом размере установки, которая не нуждается в низкой температуре обратной воды. Такое подключение обычно применяется для небольших и средних тепловых пунктов с нагрузкой приблизительно до 120 кВт. Схема присоединения водоподогревателей горячего водоснабжения в соответствии с СП 41-101-95.
Большинство систем централизованного теплоснабжения выдвигают высокие требования к установленному оборудованию. Оборудование должно быть надежным и гибким, обеспечивая необходимую безопасность. В некоторых системах оно должно также соответствовать очень высоким санитарно-гигиеническим стандартам. Еще один важный фактор в большинстве систем – это низкие эксплуатационные расходы.
Однако в нашей стране система централизованного теплоснабжения находится в плачевном состоянии:
техническая оснащенность и уровень технологических решений при строительстве тепловых сетей соответствуют состоянию 1960-х годов, в то время как резко увеличились радиусы теплоснабжения, и произошел переход на новые типоразмеры диаметров труб;
качество металла теплопроводов, теплоизоляция, запорная и регулировочная арматура, конструкции и прокладка теплопроводов значительно уступает зарубежным аналогам, что приводит к большим потерям тепловой энергии в сетях;
плохие условия теплогидроизоляции теплопроводов и каналов тепловых сетей способствовали повышению повреждаемости подземных теплопроводов, что привело к серьезным проблемам замены оборудования тепловых сетей;
отечественное оборудование крупных ТЭЦ соответствует среднему зарубежному уров ню 1980-х годов, и в настоящее время паротурбинные ТЭЦ характеризуются высокой аварийностью, так как практически половина установленной мощности турбин выработала расчетный ресурс;
на действующих угольных ТЭЦ отсутствуют системы очистки дымовых газов от NOх и SOх, а эффективность улавливания твердых частиц часто не достигает требуемых значений;
конкурентоспособность СЦТ на современном этапе можно обеспечить только внедрением специально новых технических решений, как по структуре систем, так и по схемам, оборудованию энергоисточников и тепловых сетей.
2.2 Эффективность систем централизованного теплоснабжения
Одним из важнейших условий нормальной работы системы теплоснабжения является создание гидравлического режима, обеспечивающего давления в тепловой сети достаточные для создания в теплопотребляющих установках расходов сетевой воды в соответствии с заданной тепловой нагрузкой. Нормальная работа систем теплопотребления суть обеспечение потребителей тепловой энергией соответствующего качества, и заключается для энергоснабжающей организации в выдерживании параметров режима теплоснабжения на уровне, регламентируемом Правилами Технической Эксплуатации (ПТЭ) электростанций и сетей РФ, ПТЭ тепловых энергоустановок. Гидравлический режим определяется характеристиками основных элементов системы теплоснабжения.
В процессе эксплуатации в действующей системе централизованного теплоснабжения из-за изменения характера тепловой нагрузки, подключения новых теплопотребителей, увеличения шероховатости трубопроводов, корректировки расчетной температуры на отопление, изменения температурного графика отпуска тепловой энергии (ТЭ) с источника ТЭ происходит, как правило, неравномерная подача тепла потребителям, завышение расходов сетевой воды и сокращение пропускной способности трубопроводов.
В дополнение к этому, как правило, существуют проблемы в системах теплопотребления. Такие как, разрегулированность режимов теплопотребления, разукомплектованность элеваторных узлов, самовольное нарушение потребителями схем присоединения (установленных проектами, техническими условиями и договорами). Указанные проблемы систем теплопотребления проявляются, в первую очередь, в разрегулированности всей системы, характеризующейся повышенными расходами теплоносителя. Как следствие – недостаточные (из-за повышенных потерь давления) располагаемые напоры теплоносителя на вводах, что в свою очередь приводит к желанию абонентов обеспечить необходимый перепад посредством слива сетевой воды из обратных трубопроводов для создания хотя бы минимальной циркуляции в отопительных приборах (нарушения схем присоединения и т.п.), что приводит к дополнительному увеличению расхода и, следовательно, к дополнительным потерям напора, и к появлению новых абонентов с пониженными перепадами давления и т.д. Происходит «цепная реакция» в направлении тотальной разрегулировки системы.
Все это оказывает негативное влияние на всю систему теплоснабжения и на деятельность энергоснабжающей организации: невозможность соблюдения температурного графика; повышенная подпитка системы теплоснабжения, а при исчерпании производительности водоподготовки – вынужденная подпитка сырой водой (следствие – внутренняя коррозия, преждевременный выход из строя трубопроводов и оборудования); вынужденное увеличение отпуска тепловой энергии для сокращения числа жалоб населения; увеличение эксплуатационных затрат в системе транспорта и распределения тепловой энергии.
Необходимо указать, что в системе теплоснабжения всегда имеет место взаимосвязь установившихся тепловых и гидравлических режимов. Изменение потокораспределения (его абсолютной величины включительно) всегда меняет условие теплообмена, как непосредственно на подогревательных установках, так и в системах теплопотребления. Результатом не нормальной работы системы теплоснабжения является, как правило, высокая температура обратной сетевой воды.
Следует отметить, что температура обратной сетевой воды на источнике тепловой энергии является одной из основных режимных характеристик, предназначенной для анализа состояния оборудования тепловых сетей и режимов работы системы теплоснабжения, а также для оценки эффективности мероприятий, проводимых организациями, эксплуатирующими тепловые сети, с целью повышения уровня эксплуатации системы теплоснабжения. Как правило, в случае разрегулировки системы теплоснабжения, фактическое значение данной температуры существенно отличается от своего нормативного, расчетного для данной системы теплоснабжения значения.
Таким образом, при разрегулировке системы теплоснабжения температура сетевой воды, как один из основных показателей режима отпуска и потребления тепловой энергии в системе теплоснабжения, оказывается: в подающем трубопроводе практически во всех интервалах отопительного сезона характеризуется пониженными значениями; температура обратной сетевой воды, несмотря на это, характеризуется повышенными значениями; перепад температур в подающих и обратных трубопроводах, а именно этот показатель (наряду с удельным расходом сетевой воды на присоединенную тепловую нагрузку) характеризует уровень качества потребления тепловой энергии, занижен по сравнению с требуемыми значениями.
Следует отметить еще один аспект, связанный с увеличением относительно расчетного значения расхода сетевой воды на тепловой режим систем теплопотребления (отопления, вентиляции). Для непосредственного анализа целесообразно воспользоваться зависимостью, которая определяет в случае отклонения действительных параметров и конструктивных элементов системы теплоснабжения от расчетных, отношение действительного расхода тепловой энергии в системах теплопотребления к его расчетному значению.
где Q- расход тепловой энергии в системах теплопотребления;
g- расход сетевой воды;
tп и tо - температура в подающем и обратном трубопроводах.
Данная зависимость (*), отображена на рис.3. По оси ординат отложены отношения действительного расхода тепловой энергии к его расчетному значению, по оси абсцисс отношение действительного расхода сетевой воды к его расчетному значению.
Рисунок 3 – График зависимости расхода тепловой энергии системами
теплопотребления от расхода сетевой воды.
В качестве общих тенденций, необходимо указать, что, во-первых, увеличение расхода сетевой воды в n раз не вызывает соответствующего этому числу увеличения расхода тепловой энергии, то есть коэффициент расхода теплоты отстает от коэффициента расхода сетевой воды. Во-вторых, при уменьшении расхода сетевой воды подача теплоты в местную систему теплопотребления уменьшается тем быстрее, чем меньше фактический расход сетевой воды по сравнению с расчетным.
Таким образом, системы отопления и вентиляции весьма слабо реагируют на перерасход сетевой воды. Так, увеличение расхода сетевой воды на эти системы относительно расчетного значения на 50% вызывает увеличение теплопотребления только на 10%.
Точка на рис.3 с координатами (1;1) отображает расчетный, фактически достижимый режим работы системы теплоснабжения после проведения наладочных мероприятий. Под фактически достижимым режимом работы подразумевается такой режим, который характеризуется существующим положением конструктивных элементов системы теплоснабжения, тепловыми потерями зданиями и сооружениями и определяющимся суммарным расходом сетевой воды на выводах источника тепловой энергии, необходимым для обеспечения заданной тепловой нагрузки при существующем графике отпуска тепловой энергии.
Также следует отметить, что увеличенный расход сетевой воды, ввиду ограниченного значения пропускной способности тепловых сетей, приводит к уменьшению необходимых для нормальной работы теплопотребляющего оборудования значений располагаемых напоров на вводах потребителей. Следует отметить, что потери напора по тепловой сети определяются квадратичной зависимостью от расхода сетевой воды:
То есть, при увеличении фактического расхода сетевой воды GФ в 2 раза относительно расчетного значения GР потери напора по тепловой сети увеличиваются в 4 раза, что может привести к недопустимо малым располагаемым напорам на тепловых узлах потребителей и, следовательно, к недостаточному теплоснабжению этих потребителей, что может вызывать несанкционированный слив сетевой воды для создания циркуляции (самовольному нарушению потребителями схем присоединения и т.п.)
Дальнейшее развитие такой системы теплоснабжения по пути увеличения расхода теплоносителя, во-первых, потребует замены головных участков теплопроводов, дополнительной установки сетевых насосных агрегатов, увеличения производительности водоподготовки и т.п., во-вторых, ведет к еще большему увеличению дополнительных издержек - расходов на компенсацию электроэнергии, подпиточной воды, потерь тепловой энергии.
Таким образом, технически и экономически более обоснованным представляется развитие такой системы за счет улучшения ее качественных показателей - повышения температуры теплоносителя, перепадов давления, увеличения перепада температур (теплосъема), что невозможно без кардинального сокращения расходов теплоносителя (циркуляционного и на подпитку) в системах теплопотребления и, соответственно, во всей системе теплоснабжения.
Таким образом, главным мероприятием, которое может быть предложено для оптимизации такой системы теплоснабжения, является наладка гидравлического и теплового режима системы теплоснабжения. Техническая сущность данного мероприятия заключается в установлении потокораспределения в системе теплоснабжения исходя из расчетных (т.е. соответствующих присоединенной тепловой нагрузке и выбранному температурному графику) расходов сетевой воды для каждой системы теплопотребления. Это достигается установкой на вводах в системы теплопотребления соответствующих дросселирующих устройств (авторегуляторов, дроссельных шайб, сопел элеваторов), расчет которых производится исходя из расчетного перепада давлений на каждом вводе, который рассчитывается исходя из гидравлического и теплового расчета всей системы теплоснабжения.
Следует отметить, что создание нормального режима функционирования такой системы теплоснабжения не ограничивается только проведением наладочных мероприятий, необходимо также проведение работ по оптимизации гидравлического режима системы теплоснабжения.
Режимная наладка охватывает основные звенья системы централизованного теплоснабжения: водоподогревательную установку источника теплоты, центральные тепловые пункты (при наличии таковых), тепловую сеть, контрольно-распределительные пункты (при наличии), индивидуальные тепловые пункты и местные системы теплопотребления.
Наладка начинается с обследования системы централизованного теплоснабжения. Проводится сбор и анализ исходных данных по фактическим эксплуатационным режимам работы системы транспорта и распределения тепловой энергии, сведений по техническому состоянию тепловых сетей, степени оснащённости источника теплоты, тепловых сетей и абонентов коммерческими и технологическими средствами измерения. Анализируются применяемые режимы отпуска тепловой энергии, выявляются возможные дефекты проекта и монтажа, подбирается информация для анализа характеристики системы. Проводится анализ эксплуатационной (статистической) информации (ведомостей учета параметров теплоносителя, режимов отпуска и потребления энергии, фактических гидравлических и тепловых режимов тепловых сетей) при различных значениях температуры наружного воздуха в базовые периоды, полученной по показаниям штатных СИ, а также проводится анализ отчетов специализированных организаций.
Параллельно разрабатывается расчетная схема тепловых сетей. Создается математическая модель системы теплоснабжения на базе расчетного комплекса ZuluThermo, разработки Политерм (г. С-Петербург), способного моделировать фактический тепловой и гидравлический режим работы системы теплоснабжения.
Необходимо указать, что существует достаточно распространенный подход, который заключается в максимальном снижении финансовых затрат, связанных с разработкой мероприятий по наладке и оптимизации системы теплоснабжения, а именно - затраты ограничиваются приобретением специализированного программного комплекса.
«Подводным камнем» при таком подходе является достоверность исходных данных. Математическая модель системы теплоснабжения, созданная на основе недостоверных исходных данных по характеристикам основных элементов системы теплоснабжения, оказывается, как правило, неадекватной действительности.
2.3 Энергосбережение в системах ЦТ
В последнее время имеют место критические замечания по поводу централизованного теплоснабжения на базе теплофикации - совместной выработки тепловой и электрической энергии. Как основные недостатки отмечаются большие теплопотери в трубопроводах при транспорте тепла, снижение качества теплоснабжения из-за несоблюдения температурного графика и требуемых напоров у потребителей. Предлагается переходить на децентрализованное, автономное теплоснабжение от автоматизированных котельных, в том числе и расположенных на крышах зданий, обосновывая это меньшей стоимостью и отсутствием необходимости прокладки теплопроводов. Но при этом, как правило, не учитывается, что подключение тепловой нагрузки к котельной лишает возможности выработки дешевой электроэнергии на тепловом потреблении. Поэтому эта часть невыработанной электроэнергии должна замещаться производством ее по конденсационному циклу, КПД которого в 2-2, 5 раза ниже, чем по теплофикационному. Следовательно, и стоимость электроэнергии, потребляемой зданием, теплоснабжение которого осуществляется от котельной, должна быть выше, чем у здания, подключенного к теплофикационной системе теплоснабжения, а это вызовет резкое увеличение эксплуатационных расходов.
С. А. Чистович на юбилейной конференции "75 лет теплофикации в России", проходившей в Москве в ноябре 1999 г., предложил, чтобы домовые котельные дополняли централизованное теплоснабжение, выполняя роль пиковых источников тепла, где недостающая пропускная способность сетей не позволяет осуществлять качественное снабжение теплом потребителей. При этом как бы сохраняется теплофикация и повышается качество теплоснабжения, но от этого решения веет стагнацией и безысходностью. Необходимо, чтобы централизованное теплоснабжение полностью выполняло свои функции. Ведь в теплофикации есть свои мощные пиковые котельные, и очевидно, что одна такая котельная будет экономичней сотен мелких, а если недостаточна пропускная способность сетей, то надо перекладывать сети или отсекать эту нагрузку от сетей, чтобы она не нарушала качество теплоснабжения других потребителей.
Большого успеха в теплофикации добилась Дания, которая, несмотря на низкую концентрацию тепловой нагрузки на 1 м2 площади поверхности, опережает нас по охвату теплофикацией на душу населения. В Дании проводится специальная государственная политика по предпочтению подключения к централизованному теплоснабжению новых потребителей тепла. В Западной Германии, например в г. Манхейме, быстрыми темпами развивается централизованное теплоснабжение на базе теплофикации. В Восточных землях, где, ориентируясь на нашу страну, также широко применялась теплофикация, несмотря на отказ от панельного домостроения, от ЦТП в жилых микрорайонах, оказавшимися неэффективными в условиях рыночной экономики и западного образа жизни, продолжает развиваться область централизованного теплоснабжения на базе теплофикации как наиболее экологически чистая и экономически выгодная.
Все сказанное свидетельствует о том, что на новом этапе мы должны не потерять свои передовые позиции в области теплофикации, а для этого необходимо выполнить модернизацию системы централизованного теплоснабжения, чтобы повысить ее привлекательность и эффективность.
Все плюсы совместной выработки тепла и электрической энергии относились на сторону электроэнергии, централизованное теплоснабжение финансировалось по остаточному принципу - порой ТЭЦ уже была построена, а тепловые сети еще не подведены. В результате создавались теплопроводы низкого качества с плохой изоляцией и неэффективным дренажом, подключение потребителей тепла к тепловым сетям осуществлялось без автоматического регулирования нагрузки, в лучшем случае с применением гидравлических регуляторов стабилизации расхода теплоносителя очень низкого качества.
Это вынуждало выполнять отпуск тепла от источника по методу центрального качественного регулирования (путем изменения температуры теплоносителя в зависимости от наружной температуры по единому графику для всех потребителей с постоянной циркуляцией в сетях), что приводило к значительному перерасходу тепла потребителями из-за различий их режима эксплуатации и невозможности совместной работы нескольких источников тепла на единую сеть для осуществления взаимного резервирования. Отсутствие или неэффективность действия регулировочных устройств в местах подключения потребителей к тепловым сетям вызвало также перерасход объема теплоносителя. Это приводило к росту температуры обратной воды до такой степени, что появлялась опасность выхода из строя станционных циркуляционных насосов и это вынуждало снижать отпуск тепла на источнике, нарушая температурный график даже в условиях достаточной мощности.
В отличие от нас, в Дании, например, все выгоды теплофикации в первые 12 лет отдаются на сторону тепловой энергии, а затем делятся пополам с электрической энергией. В результате Дания оказалась первой страной, где были изготовлены предварительно изолированные трубы для бесканальной прокладки с герметичным покровным слоем и автоматической системой обнаружения утечек, что резко снизило потери тепла при его транспортировке. В Дании впервые были изобретены бесшумные, безопорные циркуляционные насосы "мокрого хода", приборы учета тепла и эффективные системы авторегулирования тепловой нагрузки, что позволило сооружать непосредственно в зданиях у потребителей автоматизированные индивидуальные тепловые пункты (ИТП) с автоматическим регулированием подачи и учета тепла в местах его использования.
Поголовная автоматизация всех потребителей тепла позволила: отказаться от качественного метода центрального регулирования на источнике тепла, вызывающего нежелательные температурные колебания в трубопроводах теплосети; снизить максимальные параметры температуры воды до 110-1200С; обеспечить возможность работы нескольких источников тепла, включая мусоросжигательные заводы, на единую сеть с наиболее эффективным использованием каждого.
Температура воды в подающем трубопроводе тепловых сетей меняется в зависимости от уровня установившейся температуры наружного воздуха тремя ступенями: 120-100-80°С или 100-85-70°С (намечается тенденция к еще большему снижению этой температуры). А внутри каждой ступени, в зависимости от изменения нагрузки или отклонения наружной температуры, меняется расход циркулирующего в тепловых сетях теплоносителя по сигналу фиксируемой величины перепада давлений между подающим и обратным трубопроводами - если перепад давлений снижается ниже заданного значения, то на станциях включаются последующие теплогенерирующие и насосные установки. Теплоснабжающие компании гарантируют каждому потребителю заданный минимальный уровень перепада давлений в подводящих сетях.
Подключение потребителей проводится через теплообменники, причем, на наш взгляд, применяется избыточное количество ступеней подключения, что вызвано, видимо, границами владений собственностью. Так, была продемонстрирована следующая схема подключения: к магистральным сетям с расчетными параметрами в 125°С, находящимся в ведении производителя энергии, через теплообменник, после которого температура воды в подающем трубопроводе снижается до 120°С, подключаются разводящие сети, находящиеся в муниципальной собственности.
Уровень поддержания этой температуры задается электронным регулятором, воздействующем на клапан, устанавливаемый на обратном трубопроводе первичного контура. Во вторичном контуре циркуляция теплоносителя осуществляется насосами. Присоединение к этим разводящим сетям местных систем отопления и горячего водоснабжения отдельных зданий выполняется через самостоятельные теплообменники, устанавливаемые в подвалах этих зданий с полным набором приборов регулирования и учета тепла. Причем регулирование температуры воды, циркулирующей в местной системе отопления, выполняется по графику в зависимости от изменения температуры наружного воздуха. В расчетных условиях максимальная температура воды достигает 95°С, в последнее время наблюдается тенденция ее снижения до 75-70°С, максимальное значение температуры обратной воды, соответственно, 70 и 50°С.
Подключение тепловых пунктов отдельных зданий выполняется по стандартным схемам с параллельным присоединением емкостного водонагревателя горячего водоснабжения либо по двухступенчатой схеме с использованием потенциала теплоносителя из обратного трубопровода после водонагревателя отопления с применением скоростных теплообменников горячего водоснабжения, при этом возможно использование напорного бака-аккумулятора горячей воды с насосом для зарядки бака. В контуре отопления для сбора воды при ее расширении от нагревания используются напорные мембранные баки, у нас большее применение имеют атмосферные расширительные баки, устанавливаемые в верхней точке системы.
Для стабилизации работы регулирующих клапанов на вводе в тепловой пункт обычно устанавливают гидравлический регулятор постоянства перепада давлений. А для выведения на оптимальный режим работы систем отопления с насосной циркуляцией и облегчения распределения теплоносителя по стоякам системы - "клапан-партнер" в виде балансового вентиля, позволяющего по замеренной на нем величине потерь давления выставить правильный расход циркулирующего теплоносителя.
В Дании не обращают особого внимания на увеличение расчетного расхода теплоносителя на тепловой пункт при включении нагрева воды на бытовые нужды. В Германии законодательно запрещено учитывать при подборе мощности тепла нагрузку на горячее водоснабжение, и при автоматизации тепловых пунктов принято, что при включении водонагревателя горячего водоснабжения и при заполнении бака-аккумулятора выключаются насосы, обеспечивающие циркуляцию в системе отопления, т. е. прекращается подача тепла на отопление.
В нашей стране также придается серьезное значение недопущению увеличения мощности источника тепла и расчетного расхода теплоносителя, циркулирующего в тепловой сети в часы прохождения максимума горячего водоснабжения. Но принятое в Германии для этой цели решение не может быть применено в наших условиях, поскольку у нас значительно выше соотношение нагрузок горячего водоснабжения и отопления, из-за большой величины абсолютного потребления бытовой воды и большей плотности заселения.
Поэтому при автоматизации тепловых пунктов потребителей применяют ограничение максимального расхода воды из тепловой сети при превышении заданного значения, определенного исходя из среднечасовой нагрузки ГВС. При теплоснабжении жилых микрорайонов это выполняется путем прикрытия клапана регулятора подачи тепла на отопление в часы прохождения максимума водопотребления. Задавая регулятору отопления некоторое завышение поддерживаемого графика температуры теплоносителя, возникающий при прохождении максимума водораздела недогрев в системе отопления компенсируется в периоды водоразбора ниже среднего (в пределах заданного расхода воды из тепловой сети - связанное регулирование).
Датчиком расхода воды, который является сигналом для ограничения, служит измеритель расхода воды, входящий в комплект теплосчетчика, установленного на вводе теплосети в ЦТП или ИТП. Регулятор перепада давлений на вводе не может служить ограничителем расхода, т. к. он обеспечвает заданный перепад давлений в условиях полного открытия клапанов регулятора отопления и горячего водоснабжения, установленных параллельно.
С целью повышения эффективности совместной выработки тепловой и электрической энергии и выравнивания максимума энергопотребления в Дании нашли широкое применение тепловые аккумуляторы, которые устанавливаются у источника. Нижняя часть аккумулятора соединена с обратным трубопроводом тепловой сети, верхняя через подвижный диффузор с подающим трубопроводом. При сокращении циркуляции в распределительных тепловых сетях происходит зарядка бака. При увеличении циркуляции излишний расход теплоносителя из обратного трубопровода поступает в бак, а горячая вода выдавливается из него. Необходимость теплоаккумуляторов возрастает в ТЭЦ с противодавленческими турбинами, в которых соотношение вырабатываемой электрической и тепловой энергии фиксировано.
Если расчетная температура воды, циркулирующей в тепловых сетях, ниже 100°С, то применяют баки-аккумуляторы атмосферного типа, при более высокой расчетной температуре в баках создается давление, обеспечивающее невскипание горячей воды.
Однако, установка термостатов вместе с измерителями теплового потока на каждый отопительный прибор ведет к почти двойному удорожанию системы отопления, а в однотрубной схеме, кроме того, увеличивается необходимая поверхность нагрева приборов до 15% и имеет место существенная остаточная теплоотдача приборов в закрытом положении термостата, что снижает эффективность авторегулирования. Поэтому альтернативой таким системам, особенно в недорогом муниципальном строительстве, являются системы пофасадного автоматического регулирования отопления - для протяженных зданий и центральные с коррекцией температурного графика по отклонению температуры воздуха в сборных каналах вытяжной вентиляции из кухонь квартир - для точечных зданий или зданий со сложной конфигурацией.
Однако надо иметь в виду, что при реконструкции существующих жилых зданий для установки термостатов необходимо со сваркой входить в каждую квартиру. В то же время при организации пофасадного авторегулирования достаточно врезать перемычки между пофасадными ветками секционных систем отопления в подвале и на чердаке, а для 9-этажных бесчердачных зданий массового строительства 60-70-х годов - только в подвале.
Следует отметить, что новое строительство в год не превышает по объему 1-2% сложившегося жилого фонда. Это свидетельствует о том, какое важное значение приобретает реконструкция существующих зданий с целью снижения затрат тепла на отопление. Однако все здания сразу автоматизировать невозможно, а в условиях, когда автоматизируются несколько зданий, реальная экономия не достигается, т. к. сэкономленный на автоматизированных объектах теплоноситель перераспределяется между неавтоматизированными. Отмеченное еще раз подтверждает, что необходимо опережающими темпами возводить КРП на существующих тепловых сетях, поскольку значительно легче автоматизировать одновременно все здания, питающиеся от одного КРП, чем от ТЭЦ, а другие уже созданные КРП не пропустят лишнее количество теплоносителя в свои распределительные сети.
Все вышеизложенное не исключает возможности подключения отдельных зданий к котельным при соответствующем технико-экономическом обосновании с увеличением тарифа на потребляемую электроэнергию (например, когда необходима прокладка или перекладка большого количества сетей). Но в условиях сложившейся системы централизованного теплоснабжения от ТЭЦ это должно иметь локальный характер. Не исключается возможность применения тепловых насосов, передачи части нагрузки на ПГУ и ГТУ, но при существующей конъюнктуре цен на топливо и энергоносители это не всегда рентабельно.
Теплоснабжение жилых зданий и микрорайонов в нашей стране, как правило, осуществляется через групповые тепловые пункты (ЦТП), после которых отдельные здания снабжаются по самостоятельным трубопроводам горячей водой на отопление и на бытовые нужды водопроводной водой, нагретой в теплообменниках, установленных в ЦТП. Порой из ЦТП выходит до 8 теплопроводов (при 2-зонной системе горячего водоснабжения и наличии значительной вентиляционной нагрузки), причем хотя и применяются оцинкованные трубопроводы горячего водоснабжения, но из-за отсутствия химводоподготовки они подвергаются интенсивной коррозии и после 3-5 лет эксплуатации на них появляются свищи.
В настоящее время в связи с приватизацией жилища и предприятий сферы обслуживания, а также с ростом стоимости энергоносителей, актуальным является переход от групповых тепловых пунктов к индивидуальным (ИТП), расположенным в отапливаемом здании. Это позволяет применить более эффективную систему пофасадного авторегулирования отопления для протяженных зданий или центральную с коррекцией по температуре внутреннего воздуха в точечных зданиях, позволяет отказаться от распределительных сетей горячего водоснабжения, снизив потери тепла при транспортировке и расход электроэнергии на перекачку бытовой горячей воды. Причем это целесообразно делать не только в новом строительстве, но и при реконструкции существующих зданий. Такой опыт есть в Восточных землях Германии, где так же, как и у нас сооружались ЦТП, но сейчас их оставляют только как насосные водопроводные подкачивающие станции (при необходимости), а теплообменное оборудование вместе с циркуляционными насосами, узлами регулирования и учета переносят в ИТП зданий. Внутриквартальные сети не прокладывают, трубопроводы горячего водоснабжения оставляют в земле, а трубопроводы отопления, как более долговечные, используют для подачи перегретой воды в здания.
Для повышения управляемости тепловыми сетями, к которым будет подключено большое количество ИТП, и для обеспечения возможности резервирования в автоматическом режиме следует вернуться к устройству контрольно-распределительных пунктов (КРП) в местах подключения распределительных сетей к магистральным. Каждый КРП подключается к магистрали с обеих сторон секционных задвижек и обслуживает потребителей с тепловой нагрузкой 50-100 МВт. В КРП устанавливаются переключающие электрозадвижки на вводе, регуляторы давления, циркуляционно-подмешивающие насосы, регулятор температуры, предохранительный клапан, приборы учета расходов тепла и теплоносителя, приборы контроля и телемеханики.
Схема автоматизации КРП обеспечивает поддержание давления на постоянном минимальном уровне в обратной линии; поддержание постоянного заданного перепада давлений в распределительной сети; снижение и поддержание по заданному графику температуры воды в подающем трубопроводе распределительной сети. Вследствие этого в режиме резервирования возможна подача по магистралям от ТЭЦ уменьшенного количества циркуляционной воды с повышенной температурой без нарушения температурного и гидравлического режимов в распределительных сетях.
КРП должны располагаться в наземных павильонах, они могут блокироваться с водопроводными подкачивающими станциями (это позволит в большинстве случаев отказаться от установки высоконапорных, а потому более шумных насосов в зданиях), и могут служить границей балансовой принадлежности теплоотпускающей организации и теплораспределяющей (следующей границей между теплораспределяющей и теплоиспользующей организациями будет стена здания). Причем находиться КРП должны в ведении теплотпускающей организации, поскольку они служат для управления и резервирования магистральных сетей и обеспечивают возможность работы нескольких источников тепла на эти сети, с учетом поддержания заданных теплораспределяющей организацией параметров теплоносителя на выходе из КРП.
Правильное использование теплоносителя со стороны теплопотребителя обеспечивается применением эффективных систем автоматизации управления. Сейчас имеется большое количество компьютерных систем, которые могут выполнить любые по сложности задачи управления, но определяющими остаются технологические задания и схемные решения подключения систем теплопотребления.
В последнее время стали строить системы водяного отопления с термостатами, которые осуществляют индивидуальное автоматическое регулирование теплоотдачи отопительных приборов по температуре воздуха в помещении, где установлен прибор. Такие системы широко применяются за рубежом с дополнением обязательного измерения количества тепла, используемого прибором, в долях от общего теплопотребления системой отопления здания.
В нашей стране в массовом строительстве такие системы стали применять при элеваторном присоединении к тепловым сетям. Но элеватор устроен таким образом, что при неизменном диаметре сопла и одном и том же располагаемом напоре он пропускает постоянный расход теплоносителя через сопло, независимо от изменения расхода воды, циркулирующей в системе отопления. В результате в 2-трубных системах отопления, в которых термостаты, закрываясь, приводят к сокращению расхода теплоносителя, циркулирующего в системе, при элеваторном присоединении будет расти температура воды в подающем трубопроводе, а затем и в обратном, что приведет к увеличению теплоотдачи нерегулируемой части системы (стояков) и к недоиспользованию теплоносителя.
В однотрубной системе отопления с постоянно действующими замыкающими участками при закрывании термостатов горячая вода без остывания сбрасывается в стояк, что также приводит к росту температуры воды в обратном трубопроводе и за счет постоянства коэффициента смешения в элеваторе - к подъему температуры воды в подающем трубопроводе, а поэтому к тем же последствиям, как и в 2-трубной системе. Поэтому в таких системах обязательно осуществление автоматического регулирования температуры воды в подающем трубопроводе по графику в зависимости от изменения температуры наружного воздуха. Такое регулирование возможно за счет изменения схемного решения подключения системы отопления к тепловой сети: заменой обычного элеватора на регулируемый, путем применения насосного смешения с регулирующим клапаном или путем присоединения через теплообменник с насосной циркуляцией и регулирующим клапаном на сетевой воде перед теплообменником. [
3 ДЕЦЕНТРАЛИЗОВАННОЕ ТЕПЛОСНАБЖЕНИЕ
3.1 Перспективы развития децентрализованного теплоснабжения
Ранее принятые решения о закрытии малых котельных (под предлогом их низкой эффективности, технической и экологической опасности) сегодня обернулись сверх централизацией теплоснабжения, когда горячая вода проходит от ТЭЦ до потребителя путь в 25-30 км, когда отключение источника тепла из-за неплатежей или аварийной ситуации приводит к замерзанию городов с миллионным населением.
Большинство индустриально развитых стран шло другим путем: совершенствовали теплогенерирующее оборудование повышая уровень его безопасности и автоматизации, КПД газогорелочных устройств, санитарно гигиенические, экологические, эргономические и эстетические показатели; создали всеобъемлющую систему учёта энергоресурсов всеми потребителями; приводили нормативно-техническую базу в соответствие с требованиями целесообразности и удобства потребителя; оптимизировали уровень централизации теплоснабжения; перешли к широкому внедрению альтернативных источников тепловой энергии. Результатом такой работы стало реальное энергосбережение во всех сферах экономике, включая ЖКХ.
Постепенное увеличение доли децентрализованного теплоснабжения, максимальная приближения источника тепла к потребителю, учёт потребителем всех видов энергоресурсов позволят не только создать потребителю более комфортные условия, но и обеспечить реальную экономию газового топлива.
Современная система децентрализованного теплоснабжения представляет сложный комплекс функционально взаимосвязанного оборудования, включающего автономную теплогенерирующую установку и инженерные системы здания (горячее водоснабжение, системы отопления и вентиляции). Основными элементами системы поквартирного отопления, представляющего собой вид децентрализованного теплоснабжения, при котором каждая квартира в многоквартирном доме оборудуется автономной системой обеспечения теплотой и горячей водой, являются отопительный котел, отопительные приборы, системы подачи воздуха и отвода продуктов сгорания. Разводка выполняется с применением стальной трубы или современных теплопроводных систем - пластиковых или металлопластиковых.
Традиционное для нашей страны система централизованного снабжения теплом через ТЭЦ и магистральные теплопроводы, известна и обладает рядом достоинств. Но в условиях перехода к новым хозяйственным механизмам, известной экономической нестабильности и слабости межрегиональных, межведомственных связей, многие из достоинств системы централизованного теплоснабжения оборачиваются недостатками.
Главным из которых является протяженность теплотрасс. Cредний процент изношенности которых оценивается в 60-70% . Удельная повреждаемость теплопроводов в настоящее время выросла до 200 зарегистрированных повреждений в год на 100 км тепловых сетей. По экстренной оценке не менее 15% тепловых сетей требуют безотлагательной замены. В дополнению к этому, за последние 10 лет в результате недофинансирования практически не обновлялся основной фонд отрасли. Вследствие этого, потери теплоэнергии при производстве, транспортировке и потреблении достигли 70%, что привело к низкому качеству теплоснабжения при высоких затратах.
Организационная структура взаимодействия потребителей и теплоснабжающих предприятий не стимулирует последних к экономии энергетических ресурсов. Система тарифов и дотаций не отражает реальных затрат на теплоснабжение.
В целом, критическое положение, в котором оказалась отрасль, предполагает в ближайшем будущем возникновение крупномасштабной кризисной ситуации в сфере теплоснабжения для разрешения которой потребуются колоссальные финансовые вложения.
Насущный вопрос – разумная децентрализация теплоснабжения, поквартирное теплоснабжение. Децентрализация теплоснабжения (ДТ) – наиболее радикальный, эффективный и дешёвый способ устранения многих недостатков. Обоснованное применения ДТ в сочетании с энергосберегающими мероприятиями при строительстве и реконструкции зданий даст большую экономию энергоресурсов в Украине. В сложившихся сложных условиях единственным выходом является создание и развитие системы ДТ за счёт применения автономных тепло источников.
По квартирное теплоснабжение – это автономное обеспечение теплом и горячей водой индивидуального дома или отдельной квартиры в многоэтажном здании. Основными элементами таких автономных систем является: теплогенераторы – отопительные приборы, трубопроводы отопления и горячего водоснабжения, системы подачи топлива, воздуха и дымоудаления.
Объективными предпосылками внедрения автономных (децентрализованных) систем теплоснабжения является:
отсутствие в ряде случаев свободных мощностей на централизованных источниках;
уплотнение застройки городских районов объектами жилья;
кроме того, значительная часть застройки приходится на местности с неразвитой инженерной инфраструктурой;
более низкие капиталовложения и возможность поэтапного покрытия тепловых нагрузок;
возможность поддержания комфортных условий в квартире по своему собственному желанию, что в свою очередь является более привлекательным по сравнению с квартирами при централизованном теплоснабжении, температура в которых зависит от директивного решения о начале и окончании отопительного периода;
появление на рынке большого количества различных модификаций отечественных и импортных (зарубежных) теплогенераторов малой мощности.
Сегодня разработаны и серийно выпускаются модульные котельные установки, предназначенные для организации автономного ДТ. Блочно-модульный принцип построения обеспечивает возможность простого построения котельной необходимой мощности. Отсутствие необходимости прокладки теплотрасс и строительства здания котельной снижают стоимость коммуникаций и позволяют существенно повысить темпы нового строительства. Кроме того, это дает возможность использовать такие котельные для оперативного обеспечения теплоснабжения в условиях аварийных и чрезвычайных ситуаций в период отопительного сезона.
Блочные котельные представляют собой полностью функционально законченное изделие, оснащены всеми необходимыми приборами автоматики и безопасности. Уровень автоматизации обеспечивает бесперебойную работу всего оборудования без постоянного присутствия оператора.
Автоматика отслеживает потребность объекта в тепле в зависимости от погодных условий и самостоятельно регулирует работу всех систем для обеспечения заданных режимов. Этим достигается более качественное соблюдение теплового графика и дополнительная экономия топлива. В случае возникновения нештатных ситуаций, утечек газа, система безопасности автоматически прекращает подачу газа и предотвращает возможность аварий.
Многие предприятия, сориентировавшиеся к сегодняшним условиям и просчитав экономическую выгоду, уходят от централизованного теплоснабжения, от отдалённых и энергоёмких котельных.
Достоинствами децентрализованного теплоснабжения являются:
отсутствие необходимости отводов земли под тепловые сети и котельные;
снижение потерь теплоты из-за отсутствия внешних тепловых сетей, снижение потерь сетевой воды, уменьшение затрат на водоподготовку;
значительное снижение затрат на ремонт и обслуживание оборудование;
полная автоматизация режимов потребления.
Если брать во внимание недостаток автономного отопления от небольших котельных и относительно невысоких дымоотводящих труб и в связи с этим нарушение экологии, то значительное уменьшение потребления газа, связанное с демонтажем старой котельной, снижает и выбросы в 7 раз!
При всех достоинствах, у децентрализованного теплоснабжения имеются и негативные стороны. У мелких котельных, в том числе и "крышных", высота дымовых труб, как правило, значительно ниже, чем у крупных, из-за резко ухудшаются условия рассеивания. Кроме того, небольшие котельные располагаются, как правило, вблизи жилой зоны.
Внедрение программ децентрализации источников тепла позволяет в два раза сократить потребность в природном газе и в несколько раз снизить затраты на теплоснабжение конечных потребителей. Принципы энергосбережения, заложенные в действующей системе теплоснабжения украинских городов, стимулируют появление новых технологий и подходов, способных решить эту проблему в полной мере, а экономическая эффективность ДТ делает эту сферу весьма привлекательной в инвестиции.
Применение поквартирной системы теплоснабжения многоэтажных жилых домов позволяет полностью исключить потери тепла в тепловых сетях и при распределении между потребителями, и значительно снизить потери на источнике. Позволит организовать индивидуальный учет и регулирование потребления теплоты в зависимости от экономических возможностей и физиологических потребностей. Поквартирное теплоснабжение приведет к снижению единовременных капитальных вложений и эксплуатационных затрат, а также позволяет экономить энергетические и сырьевые ресурсы на выработку тепловой энергии и как следствие этого, приводит к уменьшению нагрузки на экологическую обстановку.
Поквартирная система теплоснабжения является экономически, энергетически, экологически эффективным решением вопроса теплоснабжения для многоэтажных домов. И все-таки, необходимо проводить всесторонний анализ эффективности применения той или иной системы теплоснабжения, принимая во внимание множество факторов.
Таким образом, анализ составляющих потерь при автономном теплоснабжении позволяет:
1) для существующего жилого фонда повысить коэффициент энергетической эффективности теплоснабжения до 0, 67 против 0, 3 при централизованном теплоснабжении;
2) для нового строительства только за счет увеличения термического сопротивления ограждающих конструкций повысить коэффициент энергетической эффективности теплоснабжения до 0, 77 против 0, 45 при централизованном теплоснабжении;
3) при использовании всего комплекса энергосберегающих технологий повысить коэффициент до 0, 85 против 0, 66 при централизованном теплоснабжении.
3.2 Энергоэффективные решения для ДТ
При автономном теплоснабжении можно использовать новые технические и технологические решения, позволяющие полностью устранить или значительно сократить все непроизводительные потери в цепи выработки, транспортировки, распределения и потребления тепла, и не просто путем строительства мини-котельной, а возможностью использования новых энергосберегающих и эффективных технологий, таких как:
1) переход на принципиально новую систему количественного регулирования выработки и отпуска тепла на источнике;
2)эффективное использование частотно-регулируемого электропривода на всех насосных агрегатах;
3) сокращение протяженности циркуляционных тепловых сетей и уменьшение их диаметра;
4) отказ от строительства центральных тепловых пунктов;
5) переход на принципиально новую схему индивидуальных тепловых пунктов с количественно-качественным регулированием в зависимости от текущей температуры наружного воздуха с помощью многоскоростных смесительных насосов и трехходовых кранов регуляторов;
6) установка "плавающего" гидравлического режима тепловой сети и полный отказ от гидравлической увязки подсоединенных к сети потребителей;
7) установка регулирующих термостатов на отопительных приборах квартир;
8) поквартирная разводка систем отопления с установкой индивидуальных счетчиков потребления тепла;
9) автоматическое поддержание постоянного давления на водоразборных устройствах горячего водоснабжения у потребителей.
Реализация указанных технологий позволяет в первую очередь минимизировать все потери и создает условия совпадения по времени режимов количества выработанного и потребленного тепла.
3.3 Выгоды децентрализованного теплоснабжения
Если проследить всю цепь: источник-транспорт-распределение-потребитель, то можно отметить следующее:
1 Источник тепла - значительно сокращается отвод земельного участка, удешевляется строительная часть (под оборудование не требуется фундаментов). Установленную мощность источника можно выбрать почти равной потребляемой, при этом предоставляется возможность не учитывать нагрузку горячего водоснабжения, так как в часы максимум она компенсируется аккумулирующей способностью здания потребителя. Сегодня это резерв. Упрощается и удешевляется схема регулирования. Исключаются потери тепла за счет несовпадения режимов выработки и потребления, соответствие которых устанавливается автоматически. Практически, остаются только потери, связанные с КПД котлоагрегата. Таким образом, на источнике имеется возможность сократить потери более чем в 3 раза.
2 Тепловые сети - сокращается протяженность, уменьшаются диаметры, сеть становится более ремонтопригодной. Постоянный температурный режим повышает коррозионную устойчивость материала труб. Уменьшается количество циркуляционной воды, ее потери с утечками. Отпадает необходимость сооружения сложной схемы водоподготовки. Отпадает необходимость поддержания гарантированного перепада давления перед вводом потребителя, и в связи с этим не нужно принимать меры по гидравлической увязке тепловой сети, так как эти параметры устанавливаются автоматически. Специалисты представляют, какая это сложная проблема - ежегодно производить гидравлический расчет и выполнять работы по гидравлической увязке разветвленной тепловой сети. Таким образом, потери в тепловых сетях снижаются почти на порядок, а в случае устройства крышной котельной для одного потребителя этих потерь вообще нет.
3 Распределительные системы ЦТП и ИТП. Необ