Первый замечательный предел: теория и примеры. Второй замечательный предел: примеры нахождения, задачи и подробные решения 1 й замечательный предел
Обычно второй замечательный предел записывают в такой форме:
\begin{equation} \lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e\end{equation}
Число $e$, указанное в правой части равенства (1), является иррациональным. Приближённое значение этого числа таково: $e\approx{2{,}718281828459045}$. Если сделать замену $t=\frac{1}{x}$, то формулу (1) можно переписать в следующем виде:
\begin{equation} \lim_{t\to{0}}\biggl(1+t\biggr)^{\frac{1}{t}}=e\end{equation}
Как и для первого замечательного предела, неважно, какое выражение стоит вместо переменной $x$ в формуле (1) или вместо переменной $t$ в формуле (2). Главное - выполнение двух условий:
- Основание степени (т.е. выражение в скобках формул (1) и (2)) должно стремиться к единице;
- Показатель степени (т.е. $x$ в формуле (1) или $\frac{1}{t}$ в формуле (2)) должен стремиться к бесконечности.
Говорят, что второй замечательный предел раскрывает неопределенность $1^\infty$. Заметьте, что в формуле (1) мы не уточняем, о какой именно бесконечности ($+\infty$ или $-\infty$) идёт речь. В любом из этих случаев формула (1) верна. В формуле (2) переменная $t$ может стремиться к нулю как слева, так и справа.
Отмечу, что есть также несколько полезных следствий из второго замечательного предела . Примеры на использование второго замечательного предела, равно как и следствий из него, очень популярны у составителей стандартных типовых расчётов и контрольных работ.
Пример №1
Вычислить предел $\lim_{x\to\infty}\left(\frac{3x+1}{3x-5}\right)^{4x+7}$.
Сразу отметим, что основание степени (т.е. $\frac{3x+1}{3x-5}$) стремится к единице:
$$ \lim_{x\to\infty}\frac{3x+1}{3x-5}=\left|\frac{\infty}{\infty}\right| =\lim_{x\to\infty}\frac{3+\frac{1}{x}}{3-\frac{5}{x}} =\frac{3+0}{3-0} =1. $$
При этом показатель степени (выражение $4x+7$) стремится к бесконечности, т.е. $\lim_{x\to\infty}(4x+7)=\infty$.
Основание степени стремится к единице, показатель степени - к бесконечности, т.е. мы имеем дело с неопределенностью $1^\infty$. Применим формулу для раскрытия этой неопределённости. В основании степени формулы расположено выражение $1+\frac{1}{x}$, а в рассматриваемом нами примере основание степени таково: $\frac{3x+1}{3x-5}$. Посему первым действием станет формальная подгонка выражения $\frac{3x+1}{3x-5}$ под вид $1+\frac{1}{x}$. Для начала прибавим и вычтем единицу:
$$ \lim_{x\to\infty}\left(\frac{3x+1}{3x-5}\right)^{4x+7} =|1^\infty| =\lim_{x\to\infty}\left(1+\frac{3x+1}{3x-5}-1\right)^{4x+7} $$
Следует учесть, что просто так добавить единицу нельзя. Если мы вынуждены добавить единицу, то её же нужно и вычесть, дабы не изменять значения всего выражения. Для продолжения решения учтём, что
$$ \frac{3x+1}{3x-5}-1 =\frac{3x+1}{3x-5}-\frac{3x-5}{3x-5} =\frac{3x+1-3x+5}{3x-5} =\frac{6}{3x-5}. $$
Так как $\frac{3x+1}{3x-5}-1=\frac{6}{3x-5}$, то:
$$ \lim_{x\to\infty}\left(1+ \frac{3x+1}{3x-5}-1\right)^{4x+7} =\lim_{x\to\infty}\left(1+\frac{6}{3x-5}\right)^{4x+7} $$
Продолжим «подгонку». В выражении $1+\frac{1}{x}$ формулы в числителе дроби находится 1, а в нашем выражении $1+\frac{6}{3x-5}$ в числителе находится $6$. Чтобы получить $1$ в числителе, опустим $6$ в знаменатель с помощью следующего преобразования:
$$ 1+\frac{6}{3x-5} =1+\frac{1}{\frac{3x-5}{6}} $$
Таким образом,
$$ \lim_{x\to\infty}\left(1+\frac{6}{3x-5}\right)^{4x+7} =\lim_{x\to\infty}\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{4x+7} $$
Итак, основание степени, т.е. $1+\frac{1}{\frac{3x-5}{6}}$, подогнано под вид $1+\frac{1}{x}$, который требуется в формуле . Теперь начнём работать с показателем степени. Заметьте, что в формуле выражения, стоящие в показатели степени и в знаменателе, одинаковы:
Значит, и в нашем примере показатель степени и знаменатель нужно привести к одинаковой форме. Чтобы получить в показателе степени выражение $\frac{3x-5}{6}$, просто домножим показатель степени на эту дробь. Естественно, что для компенсации такого домножения, придется тут же домножить на обратную дробь, т.е. на $\frac{6}{3x-5}$. Итак, имеем:
$$ \lim_{x\to\infty}\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{4x+7} =\lim_{x\to\infty}\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{\frac{3x-5}{6}\cdot\frac{6}{3x-5}\cdot(4x+7)} =\lim_{x\to\infty}\left(\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{\frac{3x-5}{6}}\right)^{\frac{6\cdot(4x+7)}{3x-5}} $$
Отдельно рассмотрим предел дроби $\frac{6\cdot(4x+7)}{3x-5}$, расположенной в степени:
$$ \lim_{x\to\infty}\frac{6\cdot(4x+7)}{3x-5} =\left|\frac{\infty}{\infty}\right| =\lim_{x\to\infty}\frac{6\cdot\left(4+\frac{7}{x}\right)}{3-\frac{5}{x}} =6\cdot\frac{4}{3} =8. $$
Ответ : $\lim_{x\to{0}}\biggl(\cos{2x}\biggr)^{\frac{1}{\sin^2{3x}}}=e^{-\frac{2}{9}}$.
Пример №4
Найти предел $\lim_{x\to+\infty}x\left(\ln(x+1)-\ln{x}\right)$.
Так как при $x>0$ имеем $\ln(x+1)-\ln{x}=\ln\left(\frac{x+1}{x}\right)$, то:
$$ \lim_{x\to+\infty}x\left(\ln(x+1)-\ln{x}\right) =\lim_{x\to+\infty}\left(x\cdot\ln\left(\frac{x+1}{x}\right)\right) $$
Раскладывая дробь $\frac{x+1}{x}$ на сумму дробей $\frac{x+1}{x}=1+\frac{1}{x}$ получим:
$$ \lim_{x\to+\infty}\left(x\cdot\ln\left(\frac{x+1}{x}\right)\right) =\lim_{x\to+\infty}\left(x\cdot\ln\left(1+\frac{1}{x}\right)\right) =\lim_{x\to+\infty}\left(\ln\left(\frac{x+1}{x}\right)^x\right) =\ln{e} =1. $$
Ответ : $\lim_{x\to+\infty}x\left(\ln(x+1)-\ln{x}\right)=1$.
Пример №5
Найти предел $\lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}}$.
Так как $\lim_{x\to{2}}(3x-5)=6-5=1$ и $\lim_{x\to{2}}\frac{2x}{x^2-4}=\infty$, то мы имеем дело с неопределенностью вида $1^\infty$. Подробные пояснения даны в примере №2, здесь же ограничимся кратким решением. Сделав замену $t=x-2$, получим:
$$ \lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}} =\left|\begin{aligned}&t=x-2;\;x=t+2\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\biggl(1+3t\biggr)^{\frac{2t+4}{t^2+4t}}=\\ =\lim_{t\to{0}}\biggl(1+3t\biggr)^{\frac{1}{3t}\cdot 3t\cdot\frac{2t+4}{t^2+4t}} =\lim_{t\to{0}}\left(\biggl(1+3t\biggr)^{\frac{1}{3t}}\right)^{\frac{6\cdot(t+2)}{t+4}} =e^3. $$
Можно решить данный пример и по-иному, используя замену: $t=\frac{1}{x-2}$. Разумеется, ответ будет тем же:
$$ \lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}} =\left|\begin{aligned}&t=\frac{1}{x-2};\;x=\frac{2t+1}{t}\\&t\to\infty\end{aligned}\right| =\lim_{t\to\infty}\left(1+\frac{3}{t}\right)^{t\cdot\frac{4t+2}{4t+1}}=\\ =\lim_{t\to\infty}\left(1+\frac{1}{\frac{t}{3}}\right)^{\frac{t}{3}\cdot\frac{3}{t}\cdot\frac{t\cdot(4t+2)}{4t+1}} =\lim_{t\to\infty}\left(\left(1+\frac{1}{\frac{t}{3}}\right)^{\frac{t}{3}}\right)^{\frac{6\cdot(2t+1)}{4t+1}} =e^3. $$
Ответ : $\lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}}=e^3$.
Пример №6
Найти предел $\lim_{x\to\infty}\left(\frac{2x^2+3}{2x^2-4}\right)^{3x} $.
Выясним, к чему стремится выражение $\frac{2x^2+3}{2x^2-4}$ при условии $x\to\infty$:
$$ \lim_{x\to\infty}\frac{2x^2+3}{2x^2-4} =\left|\frac{\infty}{\infty}\right| =\lim_{x\to\infty}\frac{2+\frac{3}{x^2}}{2-\frac{4}{x^2}} =\frac{2+0}{2-0}=1. $$
Таким образом, в заданном пределе мы имеем дело с неопределенностью вида $1^\infty$, которую раскроем с помощью второго замечательного предела:
$$ \lim_{x\to\infty}\left(\frac{2x^2+3}{2x^2-4}\right)^{3x} =|1^\infty| =\lim_{x\to\infty}\left(1+\frac{2x^2+3}{2x^2-4}-1\right)^{3x}=\\ =\lim_{x\to\infty}\left(1+\frac{7}{2x^2-4}\right)^{3x} =\lim_{x\to\infty}\left(1+\frac{1}{\frac{2x^2-4}{7}}\right)^{3x}=\\ =\lim_{x\to\infty}\left(1+\frac{1}{\frac{2x^2-4}{7}}\right)^{\frac{2x^2-4}{7}\cdot\frac{7}{2x^2-4}\cdot 3x} =\lim_{x\to\infty}\left(\left(1+\frac{1}{\frac{2x^2-4}{7}}\right)^{\frac{2x^2-4}{7}}\right)^{\frac{21x}{2x^2-4}} =e^0 =1. $$
Ответ : $\lim_{x\to\infty}\left(\frac{2x^2+3}{2x^2-4}\right)^{3x}=1$.
Теперь со спокойной душой переходим к рассмотрению замечательных пределов
.
имеет вид .
Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к 0.
Необходимо вычислить предел
Как видно, данный предел очень похож на первый замечательный, но это не совсем так. Вообще, если Вы замечаете в пределе sin, то надо сразу задуматься о том, возможно ли применение первого замечательного предела.
Согласно нашему правилу №1 подставим вместо х ноль:
Получаем неопределенность .
Теперь попробуем самостоятельно организовать первый замечательный предел. Для этого проведем нехитрую комбинацию:
Таким образом мы организовываем числитель и знаменатель так, чтобы выделить 7х. Вот уже и проявился знакомый замечательный предел. Желательно при решении выделять его:
Подставим решение первого замечательного примера и получаем:
Упрощаем дробь:
Ответ: 7/3.
Как видите – все очень просто.
Имеет вид , где e = 2,718281828… – это иррациональное число.
Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к .
Необходимо вычислить предел
Здесь мы видим наличие степени под знаком предела, значит возможно применение второго замечательного предела.
Как всегда воспользуемся правилом №1 – подставим вместо х:
Видно, что при х основание степени , а показатель – 4x > , т.е. получаем неопределенность вида :
Воспользуемся вторым замечательным пределом для раскрытия нашей неопределенности, но сначала надо его организовать. Как видно – надо добиться присутствия в показателе, для чего возведем основание в степень 3х, и одновременно в степень 1/3x, чтобы выражение не менялось:
Не забываем выделять наш замечательный предел:
Вот такие действительно замечательные пределы
!
Если у вас остались какие то вопросы по первому и второму замечательным пределам
, то смело задавайте их в комментариях.
Всем по возможности ответим.
Также вы можете позаниматься с педагогом по этой теме.
Мы рады предложить вам услуги подбора квалифицированного репетитора в вашем городе. Наши партнеры оперативно подберут для вас хорошего преподавателя на выгодных для вас условиях.
Мало информации? - Вы можете !
Можно писать математические вычисления в блокнотах. В блокноты с логотипом (http://www.blocnot.ru) индивидуальным писать намного приятней.
Собраны формулы, свойства и теоремы, применяемые при решении задач, допускающих решение с помощью первого замечательного предела. Даны подробные решения примеров с использованием первого замечательного предела его следствий.
СодержаниеСм. также: Доказательство первого замечательного предела и его следствий
Применяемые формулы, свойства и теоремы
Здесь мы рассмотрим примеры решений задач на вычисление пределов, в которых используется первый замечательный предел и его следствия.
Ниже перечислены формулы, свойства и теоремы, которые наиболее часто применяются в подобного рода вычислениях.
- Первый замечательный предел и его следствия:
. - Тригонометрические формулы для синуса, косинуса , тангенса и котангенса :
;
;
;
при , ;
;
;
;
;
;
.
Примеры решений
Пример 1
Для этого.
1. Вычисляем предел .
Поскольку функция непрерывна для всех x
,
и в том числе в точке ,
то
.
2. Поскольку функция не определена (и, следовательно, не является непрерывной) при ,
то нам нужно убедиться, что существует такая проколотая окрестность точки ,
на которой .
В нашем случае при .
Поэтому это условие выполнено.
3. Вычисляем предел .
В нашем случае он равен первому замечательному пределу:
.
Таким образом,
.
Аналогичным образом, находим предел функции в знаменателе:
;
при ;
.
И наконец, применяем арифметические свойства предела функции :
.
Применим .
При .
Из таблицы эквивалентных функций находим:
при ;
при .
Тогда .
Пример 2
Найдите предел:
.
Решение с помощью первого замечательного предела
При , , . Это неопределенность вида 0/0 .
Преобразуем функцию за знаком предела:
.
Сделаем замену переменной .
Поскольку и при ,
то
.
Аналогичным образом имеем:
.
Поскольку функция косинус непрерывна на всей числовой оси, то
.
Применяем арифметические свойства пределов:
.
Решение с помощью эквивалентных функций
Применим теорему о замене функций эквивалентными в пределе частного .
При .
Из таблицы эквивалентных функций находим:
при ;
при .
Тогда .
Пример 3
Найти предел:
.
Подставим в числитель и знаменатель дроби:
;
.
Это неопределенность вида 0/0
.
Попробуем решить этот пример с помощью первого замечательного предела. Поскольку в нем значение переменной стремится к нулю, то сделаем подстановку, чтобы новая переменная стремилась не к , а к нулю. Для этого от x перейдем к новой переменной t , сделав подстановку , . Тогда при , .
Предварительно преобразуем функцию за знаком предела, умножив числитель и знаменатель дроби на :
.
Подставим и воспользуемся приведенными выше тригонометрическими формулами.
;
;
.
Функция непрерывна при .
Находим ее предел:
.
Преобразуем вторую дробь и применим первый замечательный предел:
.
В числителе дроби мы сделали подстановку .
Применяем свойство предела произведения функций:
.
Пример 4
Найти предел:
.
При , , . У нас неопределенность вида 0/0 .
Преобразуем функцию под знаком предела. Применим формулу:
.
Подставим :
.
Преобразуем знаменатель:
.
Тогда
.
Поскольку и при ,
то сделаем подстановку ,
и применим теорему о пределе сложной функции и первый замечательный предел:
.
Применяем арифметические свойства предела функции:
.
Пример 5
Найдите предел функции:
.
Нетрудно убедиться, что в этом примере мы имеем неопределенность вида 0/0
.
Для ее раскрытия, применим результат предыдущей задачи, согласно которому
.
Введем обозначение:
(П5.1)
.
Тогда
(П5.2)
.
Из (П5.1) имеем:
.
Подставим в исходную функцию:
,
где ,
,
;
;
;
.
Используем (П5.2) и непрерывность функции косинус. Применяем арифметические свойства предела функции.
,
здесь m
- отличное от нуля число, ;
;
;
.
Пример 6
Найти предел:
.
При ,
числитель и знаменатель дроби стремятся к 0
.
Это неопределенность вида 0/0
.
Для ее раскрытия, преобразуем числитель дроби:
.
Применим формулу:
.
Подставим :
;
,
где .
Применим формулу:
.
Подставим :
;
,
где .
Числитель дроби:
.
Функция за знаком предела примет вид:
.
Найдем предел последнего множителя, учитывая его непрерывность при :
.
Применим тригонометрическую формулу:
.
Подставим ,
.
Тогда
.
Разделим числитель и знаменатель на ,
применим первый замечательный предел и одно из его следствий:
.
Окончательно имеем:
.
Примечание 1.
Также можно было применить формулу
.
Тогда .
Данная статья: «Второй замечательный предел» посвящена раскрытию в пределах неопределенностей вида:
$ \bigg[\frac{\infty}{\infty}\bigg]^\infty $ и $ ^\infty $.
Так же такие неопределенности можно раскрывать с помощью логарифмирования показательно-степенной функции, но это уже другой метод решения, о котором будет освещено в другой статье.
Формула и следствия
Формула второго замечательного предела записывается следующим образом: $$ \lim_{x \to \infty} \bigg (1+\frac{1}{x}\bigg)^x = e, \text{ где } e \approx 2.718 $$
Из формулы вытекают следствия , которые очень удобно применять для решения примеров с пределами: $$ \lim_{x \to \infty} \bigg (1 + \frac{k}{x} \bigg)^x = e^k, \text{ где } k \in \mathbb{R} $$ $$ \lim_{x \to \infty} \bigg (1 + \frac{1}{f(x)} \bigg)^{f(x)} = e $$ $$ \lim_{x \to 0} \bigg (1 + x \bigg)^\frac{1}{x} = e $$
Стоить заметить, что второй замечательный предел можно применять не всегда к показательно-степенной функции, а только в случаях когда основание стремится к единице. Для этого сначала в уме вычисляют предел основания, а затем уже делают выводы. Всё это будет рассмотрено в примерах решений.
Примеры решений
Рассмотрим примеры решений с использованием прямой формулы и её следствий. Так же разберем случаи, при которых формула не нужна. Достаточно записать только готовый ответ.
Пример 1 |
Найти предел $ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} $ |
Решение |
Подставим бесконечность в предел и посмотрим на неопределенность: $$ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} = \bigg(\frac{\infty}{\infty}\bigg)^\infty $$ Найдем предел основания: $$ \lim_{x\to\infty} \frac{x+4}{x+3}= \lim_{x\to\infty} \frac{x(1+\frac{4}{x})}{x(1+\frac{3}{x})} = 1 $$ Получили основание равное единице, а это значит уже можно применить второй замечательный предел. Для этого подгоним основание функции под формулу путем вычитания и прибавления единицы: $$ \lim_{x\to\infty} \bigg(1 + \frac{x+4}{x+3} - 1 \bigg)^{x+3} = \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = $$ Смотрим на второе следствие и записываем ответ: $$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$ |
Пример 4 |
Решить предел $ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} $ |
Решение |
Находим предел основания и видим, что $ \lim_{x\to\infty} \frac{3x^2+4}{3x^2-2} = 1 $, значит можно применить второй замечательный предел. Стандартно по плану прибавляем и вычитаем единицу из основания степени: $$ \lim_{x\to \infty} \bigg (1+\frac{3x^2+4}{3x^2-2}-1 \bigg) ^{3x} = \lim_{x\to \infty} \bigg (1+\frac{6}{3x^2-2} \bigg) ^{3x} = $$ Подгоняем дробь под формулу 2-го замеч. предела: $$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{3x} = $$ Теперь подгоняем степень. В степени должна быть дробь равная знаменателю основания $ \frac{3x^2-2}{6} $. Для этого умножим и разделим степень на неё, и продолжим решать: $$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{\frac{3x^2-2}{6} \cdot \frac{6}{3x^2-2}\cdot 3x} = \lim_{x\to \infty} e^{\frac{18x}{3x^2-2}} = $$ Предел, расположенный в степени при $ e $ равен: $ \lim_{x\to \infty} \frac{18x}{3x^2-2} = 0 $. Поэтому продолжая решение имеем: |
Ответ |
$$ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} = 1 $$ |
Разберем случаи, когда задача похожа на второй замечательный предел, но решается без него.
В статье: «Второй замечательный предел: примеры решений» была разобрана формула, её следствия и приведены частые типы задач по этой теме.
Первый замечательный предел часто применяется для вычисления пределов содержащих синус, арксинус, тангенс, арктангенс и получающихся при них неопределенностей ноль делить на ноль.
Формула
Формула первого замечательного предела имеет вид: $$ \lim_{\alpha\to 0} \frac{\sin\alpha}{\alpha} = 1 $$
Замечаем, что при $ \alpha\to 0 $ получается $ \sin\alpha \to 0 $, тем самым в числетеле и в знаменателе имеем нули. Таким образом формула первого замечательного предела нужна для раскрытия неопределенностей $ \frac{0}{0} $.
Для применения формулы необходимо, чтобы были соблюдены два условия:
- Выражения, содержащиеся в синусе и знаменателе дроби совпадают
- Выражения, стоящие в синусе и знаменателе дроби стремятся к нулю
Внимание! $ \lim_{x\to 0} \frac{\sin(2x^2+1)}{2x^2+1} \neq 1 $ Хотя выражения под синусом и в знаменателе одинаковые, однако $ 2x^2+1 = 1 $, при $ x\to 0 $. Не выполнено второе условие, поэтому применять формулу НЕЛЬЗЯ!
Следствия
Достаточно редко в задания можно увидеть чистый первый замечательный предел, в котором можно сразу было бы записать ответ. На практике всё немного сложнее выглядит, но для таких случаев будет полезно знать следствия первого замечательного предела. Благодаря им можно быстро вычислить нужные пределы.
$$ \lim_{\alpha\to 0} \frac{\alpha}{\sin\alpha} = 1 $$
$$ \lim_{\alpha\to 0} \frac{\sin(a\alpha)}{\sin(b\alpha)} = \frac{a}{b} $$
$$ \lim_{\alpha\to 0} \frac{tg\alpha}{\alpha} = 1 $$
$$ \lim_{\alpha\to 0} \frac{\arcsin\alpha}{\alpha} = 1 $$
$$ \lim_{\alpha\to 0} \frac{arctg\alpha}{\alpha} = 1 $$
Примеры решений
Рассмотрим первый замечательный предел, примеры решения которого на вычисление пределов содержащих тригонометрические функции и неопределенность $ \bigg[\frac{0}{0}\bigg] $
Пример 1 |
Вычислить $ \lim_{x\to 0} \frac{\sin2x}{4x} $ |
Решение |
Рассмотрим предел и заметим, что в нём присутствует синус. Далее подставим $ x = 0 $ в числитель и знаменатель и получим неопределенность нуль делить на нуль: $$ \lim_{x\to 0} \frac{\sin2x}{4x} = \frac{0}{0} $$ Уже два признака того, что нужно применять замечательный предел, но есть небольшой нюанс: сразу применить формулу мы не сможем, так как выражение под знаком синуса отличается от выражения стоящего в знаменателе. А нам нужно, чтобы они были равны. Поэтому с помощью элементарных преобразований числителя мы превратим его в $ 2x $. Для этого мы вынесем двойку из знаменателя дроби отдельным множителем. Выглядит это так: $$ \lim_{x\to 0} \frac{\sin2x}{4x} = \lim_{x\to 0} \frac{\sin2x}{2\cdot 2x} = $$ $$ = \frac{1}{2} \lim_{x\to 0} \frac{\sin2x}{2x} = \frac{1}{2}\cdot 1 = \frac{1}{2} $$ Обратите внимание, что в конце $ \lim_{x\to 0} \frac{\sin2x}{2x} = 1 $ получилось по формуле. Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ \lim_{x\to 0} \frac{\sin2x}{4x} =\frac{1}{2} $$ |
Пример 2 |
Найти $ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} $ |
Решение |
Как всегда сначала нужно узнать тип неопределенности. Если она нуль делить на нуль, то обращаем внимание на наличие синуса: $$ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} = \frac{0}{0} = $$ Данная неопределенность позволяет воспользоваться формулой первого замечательного предела, но выражение из знаменателя не равно аргументу синуса? Поэтом "в лоб" применить формулу нельзя. Необходимо умножить и разделить дробь на аргумент синуса: $$ = \lim_{x\to 0} \frac{(x^3+2x)\sin(x^3+2x)}{(2x-x^4)(x^3+2x)} = $$ Теперь по свойствам пределов расписываем: $$ = \lim_{x\to 0} \frac{(x^3+2x)}{2x-x^4}\cdot \lim_{x\to 0} \frac{\sin(x^3+2x)}{(x^3+2x)} = $$ Второй предел как раз подходит под формулу и равен единице: $$ = \lim_{x\to 0} \frac{x^3+2x}{2x-x^4}\cdot 1 = \lim_{x\to 0} \frac{x^3+2x}{2x-x^4} = $$ Снова подставляем $ x = 0 $ в дробь и получаем неопределенность $ \frac{0}{0} $. Для её устранения достоточно вынести за скобки $ x $ и сократить на него: $$ = \lim_{x\to 0} \frac{x(x^2+2)}{x(2-x^3)} = \lim_{x\to 0} \frac{x^2+2}{2-x^3} = $$ $$ = \frac{0^2 + 2}{2 - 0^3} = \frac{2}{2} = 1 $$ |
Ответ |
$$ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} = 1 $$ |
Пример 4 |
Вычислить $ \lim_{x\to0} \frac{\sin2x}{tg3x} $ |
Решение |
Вычисление начнём с подстановки $ x=0 $. В результате получаем неопределенность $ \frac{0}{0} $. Предел содержит синус и тангенс, что намекает на возможное развитие ситуации с использованием формулы первого замечательного предела. Преобразуем числитель и знаменатель дроби под формулу и следствие: $$ \lim_{x\to0} \frac{\sin2x}{tg3x} = \frac{0}{0} = \lim_{x\to0} \frac{\frac{\sin2x}{2x}\cdot 2x}{\frac{tg3x}{3x}\cdot 3x} = $$ Теперь видим в числителе и знаменателе появились выражения подходящие под формулу и следствия. Аргумент синуса и аргумент тангенса совпадают для соответствующих знаменателей $$ = \lim_{x\to0} \frac{1\cdot 2x}{1\cdot 3x} = \frac{2}{3} $$ |
Ответ |
$$ \lim_{x\to0} \frac{\sin2x}{tg2x} = \frac{2}{3} $$ |
В статье: "Первый замечательный предел, примеры решения" было рассказано о случаях, в которых целесообразно использовать данную формулу и её следствия.